Cultured human skeletal muscle satellite cells exhibit characteristics of mesenchymal stem cells and play anti-inflammatory roles through prostaglandin E2 and hepatocyte growth factors.


Journal

Cell biology international
ISSN: 1095-8355
Titre abrégé: Cell Biol Int
Pays: England
ID NLM: 9307129

Informations de publication

Date de publication:
Dec 2021
Historique:
revised: 06 07 2021
received: 22 04 2021
accepted: 07 08 2021
pubmed: 11 8 2021
medline: 3 3 2022
entrez: 10 8 2021
Statut: ppublish

Résumé

Skeletal muscle satellite cells (SkMSCs) play crucial roles in muscle fiber maintenance, repair, and remodeling; however, it remains unknown if these properties are preserved in cultured SkMSCs. In this study, we investigated the characteristics of cultured SkMSCs and their ability to regulate the activity of M1 macrophages. SkMSCs grew well with an average population doubling time of 26.26 ± 6.85 h during 10 passages (P). At P5, Pax7, MyoD, cluster of differentiation (CD)34, and CD56 were not expressed in SkMSCs, but the MSC markers CD73, CD105, and CD90 were expressed and the cells were differentiated into adipocytes and osteoblasts. When SkMSCs were cocultured with macrophages, interleukin (IL)-1β secretion was decreased, prostaglandin (PG)E2 was produced in coculture, and cyclooxygenase-2 protein was induced in an SkMSC-dependent manner. Hepatocyte growth factor (HGF) was highly secreted by monocultured SkMSCs; interferon-γ and lipopolysaccharide reduced its expression level. However, HGF expression recovered when SkMSCs and macrophages were cocultured. Although exogenous PGE2 upregulated macrophage pro-IL-1β expression, it suppressed the secretion of cleaved IL-1β. In contrast, HGF decreased active IL-1β secretion without affecting pro-IL-1β expression. Co-treatment of macrophages with HGF and PGE2 reduced pro-IL-1β expression level and active IL-1β secretion. Our results suggest that SkMSCs lose their satellite cell properties during serial passaging but acquire mesenchymal stem cell properties including the ability to exert an anti-inflammatory response for macrophages through PGE2 and HGF.

Identifiants

pubmed: 34374483
doi: 10.1002/cbin.11688
doi:

Substances chimiques

Anti-Inflammatory Agents 0
Biomarkers 0
HGF protein, human 0
Interleukin-1beta 0
Hepatocyte Growth Factor 67256-21-7
Cyclooxygenase 2 EC 1.14.99.1
Dinoprostone K7Q1JQR04M

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2443-2451

Subventions

Organisme : Research Grant of Yonsei University Wonju College of Medicine
ID : YUWCM-2018-96
Organisme : National Research Foundation of Korea
ID : NRF-2017R1D1A1A02019212

Informations de copyright

© 2021 International Federation for Cell Biology.

Références

Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815-1822. https://doi.org/10.1182/blood-2004-04-1559
Choi, W., Lee, J., Lee, J., Lee, S. H., & Kim, S. (2019). Hepatocyte growth factor regulates macrophage transition to the M2 phenotype and promotes murine skeletal muscle regeneration. Frontiers in Physiology, 10, 914. https://doi.org/10.3389/fphys.2019.00914
Eom, Y. W., Oh, J. E., Lee, J. I., Baik, S. K., Rhee, K. J., Shin, H. C., Kim, Y. M., Ahn, C. M., Kong, J. H., Kim, H. S., & Shim, K. Y. (2014). The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochemical and Biophysical Research Communications, 445(1), 16-22. https://doi.org/10.1016/j.bbrc.2014.01.084
Fibbi, G., D'Alessio, S., Pucci, M., Cerletti, M., & Del Rosso, M. (2002). Growth factor-dependent proliferation and invasion of muscle satellite cells require the cell-associated fibrinolytic system. Biological Chemistry, 383(1), 127-136. https://doi.org/10.1515/BC.2002.013
Heredia, J. E., Mukundan, L., Chen, F. M., Mueller, A. A., Deo, R. C., Locksley, R. M., Rando, T. A., & Chawla, A. (2013). Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell, 153(2), 376-388. https://doi.org/10.1016/j.cell.2013.02.053
Huh, C. G., Factor, V. M., Sanchez, A., Uchida, K., Conner, E. A., & Thorgeirsson, S. S. (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4477-4482. https://doi.org/10.1073/pnas.0306068101
Jennische, E., Ekberg, S., & Matejka, G. L. (1993). Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. The American Journal of Physiology, 265(1 Pt 1), C122-C128. https://doi.org/10.1152/ajpcell.1993.265.1.C122
Joe, A. W., Yi, L., Natarajan, A., Le Grand, F., So, L., Wang, J., Rudnicki, M. A., & Rossi, F. M. (2010). Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 12(2), 153-163. https://doi.org/10.1038/ncb2015
Lemos, D. R., Babaeijandaghi, F., Low, M., Chang, C. K., Lee, S. T., Fiore, D., Zhang, R. H., Natarajan, A., Nedospasov, S. A., & Rossi, F. M. (2015). Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nature Medicine, 21(7), 786-794. https://doi.org/10.1038/nm.3869
Lukjanenko, L., Karaz, S., Stuelsatz, P., Gurriaran-Rodriguez, U., Michaud, J., Dammone, G., Sizzano, F., Mashinchian, O., Ancel, S., Migliavacca, E., Liot, S., Jacot, G., Metairon, S., Raymond, F., Descombes, P., Palini, A., Chazaud, B., Rudnicki, M. A., Bentzinger, C. F., & Feige, J. N. (2019). Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors. Cell Stem Cell, 24(3), 433-446. https://doi.org/10.1016/j.stem.2018.12.014
Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103(12), 4619-4621. https://doi.org/10.1182/blood-2003-11-3909
Melief, S. M., Schrama, E., Brugman, M. H., Tiemessen, M. M., Hoogduijn, M. J., Fibbe, W. E., & Roelofs, H. (2013). Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells, 31(9), 1980-1991. https://doi.org/10.1002/stem.1432
Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews Immunology, 8(12), 958-969. https://doi.org/10.1038/nri2448
Nakamura, T., & Mizuno, S. (2010). The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 86(6), 588-610. https://doi.org/10.2183/pjab.86.588
Otis, J. S., Niccoli, S., Hawdon, N., Sarvas, J. L., Frye, M. A., Chicco, A. J., & Lees, S. J. (2014). Pro-inflammatory mediation of myoblast proliferation. PLOS One, 9(3), e92363. https://doi.org/10.1371/journal.pone.0092363
Palacios, D., Mozzetta, C., Consalvi, S., Caretti, G., Saccone, V., Proserpio, V., Marquez, V. E., Valente, S., Mai, A., Forcales, S. V., Sartorelli, V., & Puri, P. L. (2010). TNF/p38ɑ/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell, 7(4), 455-469. https://doi.org/10.1016/j.stem.2010.08.013
Park, H. J., Kim, J., Saima, F. T., Rhee, K. J., Hwang, S., Kim, M. Y., Baik, S. K., Eom, Y. W., & Kim, H. S. (2018). Adipose-derived stem cells ameliorate colitis by suppression of inflammasome formation and regulation of M1-macrophage population through prostaglandin E2. Biochemical and Biophysical Research Communications, 498(4), 988-995. https://doi.org/10.1016/j.bbrc.2018.03.096
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147. https://doi.org/10.1126/science.284.5411.143
Saldana, L., Bensiamar, F., Valles, G., Mancebo, F. J., Garcia-Rey, E., & Vilaboa, N. (2019). Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Research and Therapy, 10(1), 58. https://doi.org/10.1186/s13287-019-1156-6
Schneider, B. S., & Tiidus, P. M. (2007). Neutrophil infiltration in exercise-injured skeletal muscle: How do we resolve the controversy? Sports Medicine, 37(10), 837-856. https://doi.org/10.2165/00007256-200737100-00002
Seale, P., Bjork, B., Yang, W., Kajimura, S., Chin, S., Kuang, S., Scime, A., Devarakonda, S., Conroe, H. M., Erdjument-Bromage, H., Tempst, P., Rudnicki, M. A., Beier, D. R., & Spiegelman, B. M. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature, 454(7207), 961-967. https://doi.org/10.1038/nature07182
Shefer, G., Wleklinski-Lee, M., & Yablonka-Reuveni, Z. (2004). Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. Journal of Cell Science, 117(Pt 22), 5393-5404. https://doi.org/10.1242/jcs.01419
Sisson, T. H., Nguyen, M. H., Yu, B., Novak, M. L., Simon, R. H., & Koh, T. J. (2009). Urokinase-type plasminogen activator increases hepatocyte growth factor activity required for skeletal muscle regeneration. Blood, 114(24), 5052-5061. https://doi.org/10.1182/blood-2008-12-196212
Tatsumi, R., Anderson, J. E., Nevoret, C. J., Halevy, O., & Allen, R. E. (1998). HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Developmental Biology, 194(1), 114-128. https://doi.org/10.1006/dbio.1997.8803
Tatsumi, R., Sankoda, Y., Anderson, J. E., Sato, Y., Mizunoya, W., Shimizu, N., Suzuki, T., Yamada, M., Rhoads, R. P. Jr., Ikeuchi, Y., & Allen, R. E. (2009). Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. American Journal of Physiology-Cell Physiology, 297(2), C238-C252. https://doi.org/10.1152/ajpcell.00161.2009
Tidball, J. G. (2017). Regulation of muscle growth and regeneration by the immune system. Nature Reviews Immunology, 17(3), 165-178. https://doi.org/10.1038/nri.2016.150

Auteurs

Seongyup Kim (S)

Department of General Surgery, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Pil Young Jung (PY)

Department of General Surgery, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Jin Suk Lee (JS)

Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Soonjae Hwang (S)

Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Joon Hyung Sohn (JH)

Central Research Laboratory, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Yongdae Yoon (Y)

Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Keum Seok Bae (KS)

Department of General Surgery, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Young Woo Eom (YW)

Regeneration Medicine Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
Cell Therapy and Tissue Engineering Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH