Heritability and interindividual variability of regional structure-function coupling.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
12 08 2021
12 08 2021
Historique:
received:
09
12
2020
accepted:
16
07
2021
entrez:
13
8
2021
pubmed:
14
8
2021
medline:
31
8
2021
Statut:
epublish
Résumé
White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.
Identifiants
pubmed: 34385454
doi: 10.1038/s41467-021-25184-4
pii: 10.1038/s41467-021-25184-4
pmc: PMC8361191
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
4894Subventions
Organisme : NINDS NIH HHS
ID : R21 NS104634
Pays : United States
Organisme : NLM NIH HHS
ID : R01 LM012719
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG053949
Pays : United States
Organisme : NIMH NIH HHS
ID : RF1 MH123232
Pays : United States
Organisme : NIMH NIH HHS
ID : U54 MH091657
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS102646
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009).
pubmed: 19188601
pmcid: 2634800
doi: 10.1073/pnas.0811168106
Shen, K. et al. Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32, 17465–17476 (2012).
pubmed: 23197737
pmcid: 6621872
doi: 10.1523/JNEUROSCI.2709-12.2012
Mišić, B. et al. Network-level structure-function relationships in human neocortex. Cereb. Cortex 26, 3285–3296 (2016).
Hermundstad, A. M. et al. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc. Natl Acad. Sci. USA 110, 6169–6174 (2013).
pubmed: 23530246
pmcid: 3625268
doi: 10.1073/pnas.1219562110
Uddin, L. Q. Complex relationships between structural and functional brain connectivity. Trend. Cogn. Sci. 17, 600–602 (2013).
Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).
pubmed: 21170073
doi: 10.1038/nrn2961
Sanz Leon, P. et al. The virtual brain: a simulator of primate brain network dynamics. Front. Neuroinformatics 7, 10 (2013).
doi: 10.3389/fninf.2013.00010
Abdelnour, F., Voss, H. U. & Raj, A. Network diffusion accurately models the relationship between structural and functional brain connectivity networks. NeuroImage 90, 335–47 (2014).
pubmed: 24384152
doi: 10.1016/j.neuroimage.2013.12.039
Vázquez-Rodríguez, B. et al. Gradients of structure–function tethering across neocortex. Proc. Natl Acad. Sci. USA 116, 21219–21227 (2019).
pubmed: 31570622
pmcid: 6800358
doi: 10.1073/pnas.1903403116
Chu, S.-H., Parhi, K. K. & Lenglet, C. Function-specific and enhanced brain structural connectivity mapping via joint modeling of diffusion and functional MRI. Sci. Rep. 8, 4741 (2018).
pubmed: 29549287
pmcid: 5856752
doi: 10.1038/s41598-018-23051-9
Kuceyeski, A. et al. The application of a mathematical model linking structural and functional connectomes in severe brain injury. NeuroImage: Clin. 11, 635–647 (2016).
doi: 10.1016/j.nicl.2016.04.006
Kuceyeski, A. F., Jamison, K. W., Owen, J. P., Raj, A. & Mukherjee, P. Longitudinal increases in structural connectome segregation and functional connectome integration are associated with better recovery after mild TBI. Hum. Brain Mapp. 40, 4441–4456 (2019).
pubmed: 31294921
pmcid: 6865536
doi: 10.1002/hbm.24713
Amico, E. & Goñi, J. Mapping hybrid functional-structural connectivity traits in the human connectome. Netw. Neurosci. 2, 306–322 (2018).
pubmed: 30259007
pmcid: 6145853
doi: 10.1162/netn_a_00049
Zimmermann, J., Griffiths, J. D. & McIntosh, A. R. Unique mapping of structural and functional connectivity on cognition. J. Neurosci. 38, 9658–9667 (2018).
pubmed: 30249801
pmcid: 6595988
doi: 10.1523/JNEUROSCI.0900-18.2018
Liégeois, R. et al. Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun. 10, 2317 (2019).
pubmed: 31127095
pmcid: 6534566
doi: 10.1038/s41467-019-10317-7
Rykhlevskaia, E., Gratton, G. & Fabiani, M. Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45, 173–187 (2008).
pubmed: 17995910
doi: 10.1111/j.1469-8986.2007.00621.x
Kesler, S. R. et al. Disrupted brain network functional dynamics and hyper-correlation of structural and functional connectome topology in patients with breast cancer prior to treatment. Brain Behav. 7, e00643 (2017).
pubmed: 28293478
pmcid: 5346525
doi: 10.1002/brb3.643
Wang, J. et al. Alterations in brain network topology and structural-functional connectome coupling relate to cognitive impairment. Front. Aging Neurosci. 10, 404 (2018).
pubmed: 30618711
pmcid: 6300727
doi: 10.3389/fnagi.2018.00404
Demertzi, A. et al. Human consciousness is supported by dynamic complex patterns of brain signal coordination. Sci. Adv. 5, https://doi.org/10.1126/sciadv.aat7603 (2019).
Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).
pubmed: 25561541
pmcid: 4311826
doi: 10.1073/pnas.1418031112
Tagliazucchi, E., Crossley, N., Bullmore, E. T. & Laufs, H. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling. Brain Struct. Funct. 221, 4221–4234 (2016).
pubmed: 26650048
doi: 10.1007/s00429-015-1162-0
Medaglia, J. D. et al. Functional alignment with anatomical networks is associated with cognitive flexibility. Nat. Hum. Behav. 2, 156–164 (2018).
pubmed: 30498789
doi: 10.1038/s41562-017-0260-9
Hagmann, P. et al. White matter maturation reshapes structural connectivity in the late developing human brain. Proc. Natl Acad. Sci. USA 107, 19067–19072 (2010).
pubmed: 20956328
pmcid: 2973853
doi: 10.1073/pnas.1009073107
Baum, G. L. et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl Acad. Sci. USA 117, 771–778 (2020).
pubmed: 31874926
doi: 10.1073/pnas.1912034117
Zhao, S. et al. Sex differences in anatomical rich-club and structural-functional coupling in the human brain network. Cereb. Cortex 31, Bhaa335 (2020).
Ge, T., Holmes, A. J., Buckner, R. L., Smoller, J. W. & Sabuncu, M. R. Heritability analysis with repeat measurements and its application to resting-state functional connectivity. Proc. Natl Acad. Sci. USA 114, 5521–5526 (2017).
pubmed: 28484032
pmcid: 5448225
doi: 10.1073/pnas.1700765114
Sinclair, B. et al. Heritability of the network architecture of intrinsic brain functional connectivity. NeuroImage 121, 243 (2015).
pubmed: 26226088
doi: 10.1016/j.neuroimage.2015.07.048
Miranda-Dominguez, O. et al. Heritability of the human connectome: a connectotyping study. Netw. Neurosci. 2, 175 (2018).
pubmed: 30215032
pmcid: 6130446
doi: 10.1162/netn_a_00029
Vuoksimaa, E. et al. Heritability of white matter microstructure in late middle age: A twin study of tract-based fractional anisotropy and absolute diffusivity indices. Hum. Brain Mapp. 38, 2026–2036 (2017).
pubmed: 28032374
doi: 10.1002/hbm.23502
Zhao, B. et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Mol. Psychiatry 1–13, https://doi.org/10.1038/s41380-019-0569-z (2019).
Bertolero, M. A. et al. The human brain’s network architecture is genetically encoded by modular pleiotropy. Preprint at https://arxiv.org/abs/1905.07606 (2019).
Van Essen, D. C. et al. The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013).
pubmed: 23684880
doi: 10.1016/j.neuroimage.2013.05.041
Craddock, R. C., James, G. A., Holtzheimer III, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fmri atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).
pubmed: 21769991
doi: 10.1002/hbm.21333
Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1–15 (2010).
pubmed: 20547229
doi: 10.1016/j.neuroimage.2010.06.010
Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. Sift2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015).
pubmed: 26163802
doi: 10.1016/j.neuroimage.2015.06.092
Burt, J. B. et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21, 1251–1259 (2018).
pubmed: 30082915
pmcid: 6119093
doi: 10.1038/s41593-018-0195-0
Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7, 635–646 (1997).
Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).
pubmed: 27791099
pmcid: 5098630
doi: 10.1073/pnas.1608282113
Marquis, R. et al. Spatial resolution and imaging encoding fmri settings for optimal cortical and subcortical motor somatotopy in the human brain. Front. Neurosci. 13, 571 (2019).
pubmed: 31244595
pmcid: 6579882
doi: 10.3389/fnins.2019.00571
Suárez, L. E., Markello, R. D., Betzel, R. F. & Misic, B. Linking structure and function in macroscale brain networks. Trend. Cogn. Sci. 24, 302–315 (2020).
Sarwar, T., Tian, Y., Yeo, B., Ramamohanarao, K. & Zalesky, A. Structure-function coupling in the human connectome: a machine learning approach. NeuroImage https://doi.org/10.1016/j.neuroimage.2020.117609 (2020).
Liégeois, R., Santos, A., Matta, V., Van De Ville, D. & Sayed, A. H. Revisiting correlation-based functional connectivity and its relationship with structural connectivity. Network Neurosci. 4, 1–25 (2020).
Giedd, J. N. et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2, 861–863 (1999).
pubmed: 10491603
doi: 10.1038/13158
Torregrossa, M. M., Quinn, J. J. & Taylor, J. R. Impulsivity, compulsivity, and habit: the role of orbitofrontal cortex revisited. Biol. Psychiatry 63, 253–255 (2008).
pubmed: 18194683
pmcid: 2265211
doi: 10.1016/j.biopsych.2007.11.014
Dhamala, Elvisha, et al. Sex classification using long‐range temporal dependence of resting‐state functional MRI time series. Hum. Brain Map. 41, 3567–3579 (2020).
Hodgson, K. et al. Shared genetic factors influence head motion during MRI and body mass index. Cereb. Cortex 27, 5539–5546 (2017).
Cao, R. et al. Abnormal anatomical rich-club organization and structural-functional coupling in mild cognitive impairment and alzheimer’s disease. Front. Neurol. 11, 53 (2020).
pubmed: 32117016
pmcid: 7013042
doi: 10.3389/fneur.2020.00053
Cabral, J. et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7, 5135 (2017).
pubmed: 28698644
pmcid: 5506029
doi: 10.1038/s41598-017-05425-7
Kurth, F., Zilles, K., Fox, P. T., Laird, A. R. & Eickhoff, S. B. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 (2010).
pubmed: 20512376
pmcid: 4801482
doi: 10.1007/s00429-010-0255-z
Glahn, D. C. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci. USA 107, 1223–1228 (2010).
pubmed: 20133824
pmcid: 2824276
doi: 10.1073/pnas.0909969107
Anderson, K. M. et al. Heritability of individualized cortical network topography. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.0909969107 (2021).
Ciric, R. et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154, 174–187 (2017).
pubmed: 28302591
doi: 10.1016/j.neuroimage.2017.03.020
Maier-Hein, K. H. et al. The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8, 1349 (2017).
pubmed: 29116093
pmcid: 5677006
doi: 10.1038/s41467-017-01285-x
Sarwar, T., Ramamohanarao, K. & Zalesky, A. Mapping connectomes with diffusion mri: deterministic or probabilistic tractography? Magn. Reson. Med. 81, 1368–1384 (2019).
pubmed: 30303550
doi: 10.1002/mrm.27471
Glasser, M. F. et al. The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013).
pubmed: 23668970
doi: 10.1016/j.neuroimage.2013.04.127
Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A. & Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 103, 411–426 (2014).
pubmed: 25109526
doi: 10.1016/j.neuroimage.2014.07.061
Tournier, J. D., Calamante, F. & Connelly, A. Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. In: Proceedings of the International Society for Magnetic Resonance in Medicine, Vol. 1670 (Ismrm, 2010).
Smith, R. E., Tournier, J.-D., Calamante, F. & Connelly, A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62, 1924–1938 (2012).
pubmed: 22705374
doi: 10.1016/j.neuroimage.2012.06.005
Griffanti, L. et al. Ica-based artefact removal and accelerated fmri acquisition for improved resting state network imaging. Neuroimage 95, 232–247 (2014).
pubmed: 24657355
doi: 10.1016/j.neuroimage.2014.03.034
Salimi-Khorshidi, G. et al. Automatic denoising of functional mri data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage 90, 449–468 (2014).
pubmed: 24389422
doi: 10.1016/j.neuroimage.2013.11.046
Smith, S. M. et al. Resting-state fmri in the human connectome project. Neuroimage 80, 144–168 (2013).
pubmed: 23702415
doi: 10.1016/j.neuroimage.2013.05.039
Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2, 125–41 (2012).
pubmed: 22642651
doi: 10.1089/brain.2012.0073
Li, J. et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. NeuroImage 196, 126–141 (2019).
pubmed: 30974241
doi: 10.1016/j.neuroimage.2019.04.016
Burt, J. B., Helmer, M., Shinn, M., Anticevic, A. & Murray, J. D. Generative modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038 (2020).
pubmed: 32585343
doi: 10.1016/j.neuroimage.2020.117038
Molenberghs, G. & Verbeke, G. Linear Mixed Models for Longitudinal Data (Springer, 2000).
Patterson, D. & Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545–554 (1971).
doi: 10.1093/biomet/58.3.545
Dworkin, J. D. et al. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23, 918–926 (2020).
pubmed: 32561883
doi: 10.1038/s41593-020-0658-y
Gu, Z. Heritability and interindividual variability of regional structure-function coupling. zijin-gu/scfc-coupling: first release of the SC-FC coupling code. (Version v1.0). Zenodo https://doi.org/10.5281/zenodo.5042208 (2021).
Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).