Antineoplastic agents aggravate the damages caused by nicotine on the peri-implant bone: an in vivo histomorphometric and immunohistochemical study in rats.
Antineoplastic agents
Cisplatin
Dental implants
Fluorouracil
Nicotine
Osseointegration
Journal
Clinical oral investigations
ISSN: 1436-3771
Titre abrégé: Clin Oral Investig
Pays: Germany
ID NLM: 9707115
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
14
06
2021
accepted:
01
08
2021
pubmed:
14
8
2021
medline:
9
2
2022
entrez:
13
8
2021
Statut:
ppublish
Résumé
To assess the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the treatment of cancer. This study evaluated the influence of cisplatin (CIS) and 5-fluorouracil (5-FU) over the peri-implant tissues around osseointegrated titanium implants in animals previously exposed to nicotine. Materials and methods One hundred twenty male rats were divided into two groups, receiving via subcutaneous injection, either physiological saline solution (PSS) (n = 30) or nicotine hemissulfate (NIC) (n = 90) for 30 days prior to implants' placement. One titanium implant (4.0 × 2.2 mm) was installed in each tibia of all animals. PSS and NIC were continued for 30 days after surgery. Five days after cessation, rats were subdivided into three subgroups in accordance with systemic treatments with either PSS, CIS, or 5-FU. Euthanasia was performed at 50, 65, and 95 days post-surgery. Histometric, histopathological, and immunohistochemical analyses were performed. NIC-CIS and NIC-5FU presented lower BIC (50, 65, and 95 days) and bone area fraction occupancy (BAFO) (65 and 95 days) than group NIC. Intense inflammatory infiltration, severe tissue breakdown, reduced expression of bone formation biomarkers, and upregulation of TRAP were observed in NIC-CIS and NIC-5FU when compared with group NIC. TRAP expression was significantly higher in NIC-5FU as compared with NIC-CIS at 50 and 95 days. Groups NIC, NIC-CIS, and NIC-5FU presented statistically significant negative impact in all outcome parameters than group PSS. CIS and 5-FU severely disrupted the peri-implant tissues around osseointegrated implants in animals previously exposed to nicotine. Assessing the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the cancer treatment.
Identifiants
pubmed: 34386857
doi: 10.1007/s00784-021-04121-1
pii: 10.1007/s00784-021-04121-1
doi:
Substances chimiques
Antineoplastic Agents
0
Dental Implants
0
Nicotine
6M3C89ZY6R
Titanium
D1JT611TNE
Types de publication
Journal Article
Langues
eng
Pagination
1477-1489Subventions
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2017/11805-0
Organisme : fundação de amparo à pesquisa do estado de são paulo
ID : 2014/11427-8
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer [published correction appears in Nat Rev Cancer. 2004;4:84]. Nat Rev Cancer 3:733–744. https://doi.org/10.1038/nrc1190
doi: 10.1038/nrc1190
pubmed: 14570033
Phillips DH (2002) The formation of DNA adducts. In: Allison MR (ed) The Cancer Handbook. London, Macmillan, pp 293–306
Liauw SL, Connell PP, Weichselbaum RR (2013) New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci Transl Med 5:173sr2. https://doi.org/10.1126/scitranslmed.3005148
doi: 10.1126/scitranslmed.3005148
pubmed: 23427246
pmcid: 3769139
Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952. https://doi.org/10.1200/JCO.2005.07.093
doi: 10.1200/JCO.2005.07.093
pubmed: 15557593
Lorch JH, Goloubeva O, Haddad RI et al (2011) Induction chemotherapy with cisplatin and fluorouracil alone or in combination with docetaxel in locally advanced squamous-cell cancer of the head and neck: long-term results of the TAX 324 randomised phase 3 trial. Lancet Oncol 12:153–159. https://doi.org/10.1016/S1470-2045(10)70279-5
doi: 10.1016/S1470-2045(10)70279-5
pubmed: 21233014
pmcid: 4356902
Vermorken JB, Peyrade F, Krauss J et al (2014) Cisplatin, 5-fluorouracil, and cetuximab (PFE) with or without cilengitide in recurrent/metastatic squamous cell carcinoma of the head and neck: results of the randomized phase I/II ADVANTAGE trial (phase II part). Ann Oncol 25:682–688. https://doi.org/10.1093/annonc/mdu003
doi: 10.1093/annonc/mdu003
pubmed: 24567516
pmcid: 3933250
Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338. https://doi.org/10.1038/nrc1074
doi: 10.1038/nrc1074
pubmed: 12724731
Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK (2008) Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett 260:96–108. https://doi.org/10.1016/j.canlet.2007.10.022
doi: 10.1016/j.canlet.2007.10.022
pubmed: 18036733
Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320. https://doi.org/10.1038/nrd1691
doi: 10.1038/nrd1691
pubmed: 15789122
van Kuilenburg AB, Meinsma R, Zonnenberg BA et al (2003) Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 9:4363–4367
pubmed: 14555507
Urushiyama H, Jo T, Yasunaga H et al (2018) Oral fluorouracil vs vinorelbine plus cisplatin as adjuvant chemotherapy for stage II-IIIA non-small cell lung cancer: Propensity score-matched and instrumental variable analyses. Cancer Med 7:4863–4869. https://doi.org/10.1002/cam4.1725
doi: 10.1002/cam4.1725
pubmed: 30151905
pmcid: 6198210
Cox LS, Africano NL, Tercyak KP, Taylor KL (2003) Nicotine dependence treatment for patients with cancer. Cancer 98:632–644. https://doi.org/10.1002/cncr.11538
doi: 10.1002/cncr.11538
pubmed: 12879483
Naseri R, Yaghini J, Feizi A (2020) Levels of smoking and dental implants failure: a systematic review and meta-analysis. J Clin Periodontol 47:518–528. https://doi.org/10.1111/jcpe.13257
doi: 10.1111/jcpe.13257
pubmed: 31955453
Javed F, Rahman I (2000) Romanos GE (2009) Tobacco-product usage as a risk factor for dental implants. Periodontol 81:48–56. https://doi.org/10.1111/prd.12282
doi: 10.1111/prd.12282
Kamer AR, El-Ghorab N, Marzec N, Margarone JE 3rd, Dziak R (2006) Nicotine induced proliferation and cytokine release in osteoblastic cells. Int J Mol Med 17:121–127
pubmed: 16328020
Ma L, Zheng LW, Sham MH, Cheung LK (2010) Uncoupled angiogenesis and osteogenesis in nicotine-compromised bone healing. J Bone Miner Res 25:1305–1313. https://doi.org/10.1002/jbmr.19
doi: 10.1002/jbmr.19
pubmed: 20200934
Kallala R, Barrow J, Graham SM, Kanakaris N, Giannoudis PV (2013) The in vitro and in vivo effects of nicotine on bone, bone cells and fracture repair. Expert Opin Drug Saf 12:209–233. https://doi.org/10.1517/14740338.2013.770471
doi: 10.1517/14740338.2013.770471
pubmed: 23410538
Terheyden H, Lang NP, Bierbaum S, Stadlinger B (2012) Osseointegration–communication of cells. Clin Oral Implants Res 23:1127–1135. https://doi.org/10.1111/j.1600-0501.2011.02327.x
doi: 10.1111/j.1600-0501.2011.02327.x
pubmed: 22092345
Al-Mahalawy H, Marei HF, Abuohashish H, Alhawaj H, Alrefaee M, Al-Jandan B (2016) Effects of cisplatin chemotherapy on the osseointegration of titanium implants. J Craniomaxillofac Surg 44:337–346. https://doi.org/10.1016/j.jcms.2016.01.012
doi: 10.1016/j.jcms.2016.01.012
pubmed: 26895777
Matheus HR, Ervolino E, Faleiros PL et al (2018) Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: an in vivo study in rats. J Clin Periodontol 45:241–252. https://doi.org/10.1111/jcpe.12824
doi: 10.1111/jcpe.12824
pubmed: 28965362
Dantas MVM, Verzola MHA, Sanitá PV, Dovigo LN, Cerri PS, Gabrielli MAC (2019) The influence of cisplatin-based chemotherapy on the osseointegration of dental implants: An in vivo mechanical and histometrical study. Clin Oral Implants Res 30:603–616. https://doi.org/10.1111/clr.13445
doi: 10.1111/clr.13445
pubmed: 31022308
Sgolastra F, Petrucci A, Severino M, Gatto R, Monaco A (2015) Smoking and the risk of peri-implantitis. A systematic review and meta-analysis. Clin Oral Implants Res 26:e62–e67. https://doi.org/10.1111/clr.12333
doi: 10.1111/clr.12333
pubmed: 24438442
https://www.euro.who.int/__data/assets/pdf_file/0009/402777/Tobacco-Trends-Report-ENG-WEB.pdf
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412
doi: 10.1371/journal.pbio.1000412
pubmed: 20613859
pmcid: 2893951
Okamoto M, Kita T, Okuda H, Tanaka T, Nakashima T (1994) Effects of aging on acute toxicity of nicotine in rats. Pharmacol Toxicol 75(1):1–6. https://doi.org/10.1111/j.1600-0773.1994.tb00316.x
doi: 10.1111/j.1600-0773.1994.tb00316.x
pubmed: 7971729
Food and Drug Administration (2014). Dose calculator: conversion chemotherapy of human to animals. Retrieved from http://www.fda.gov
Bois DU, Du D, Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition 5(5):303–313
pubmed: 2520314
Gusman DJR, Ervolino E, Theodoro LH et al (2019) Antineoplastic agents exacerbate periodontal inflammation and aggravate experimental periodontitis. J Clin Periodontol 46(4):457–469. https://doi.org/10.1111/jcpe.13101
doi: 10.1111/jcpe.13101
pubmed: 30854670
Campos JH, Gomes HC (2008) dos-Santos WL, Cardeal M, Ferreira LM (2008) Effect of nicotine treatment and withdrawal on random-pattern skin flaps in rats. Exp Toxicol Pathol 60(6):449–452. https://doi.org/10.1016/j.etp.2008.02.004
doi: 10.1016/j.etp.2008.02.004
pubmed: 18691857
Matheus HR, Ervolino E, Gusman DJR et al (2020) Association of hyaluronic acid with a deproteinized bovine graft improves bone repair and increases bone formation in critical-size bone defects. J Periodontol Advance online publication. https://doi.org/10.1002/JPER.20-0613
doi: 10.1002/JPER.20-0613
Mouraret S, Hunter DJ, Bardet C et al (2014) Improving oral implant osseointegration in a murine model via Wnt signal amplification. J Clin Periodontol 41:172–180. https://doi.org/10.1111/jcpe.12187
doi: 10.1111/jcpe.12187
pubmed: 24164629
Thoma DS, Martin IS, Mühlemann S, Jung RE (2012) Systematic review of pre-clinical models assessing implant integration in locally compromised sites and/or systemically compromised animals. J Clin Periodontol 39(Suppl 12):37–62. https://doi.org/10.1111/j.1600-051X.2011.01833.x
doi: 10.1111/j.1600-051X.2011.01833.x
pubmed: 22533946
Berley J, Yamano S, Sukotjo C (2010) The effect of systemic nicotine on osseointegration of titanium implants in the rat femur. J Oral Implantol 36(3):185–193. https://doi.org/10.1563/AAID-JOI-D-09-00050
doi: 10.1563/AAID-JOI-D-09-00050
pubmed: 20553172
Florou AN, Gkiozos IC, Tsagouli SK, Souliotis KN, Syrigos KN (2014) Clinical significance of smoking cessation in subjects with cancer: a 30-year review. Respir Care 59:1924–1936. https://doi.org/10.4187/respcare.02559
doi: 10.4187/respcare.02559
pubmed: 25185148
O’Malley M, King AN, Conte M, Ellingrod VL, Ramnath N (2014) Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. J Thorac Oncol 9:917–926. https://doi.org/10.1097/JTO.0000000000000191
doi: 10.1097/JTO.0000000000000191
pubmed: 24926542
Petros WP, Younis IR, Ford JN, Weed SA (2012) Effects of tobacco smoking and nicotine on cancer treatment. Pharmacotherapy 32:920–931. https://doi.org/10.1002/j.1875-9114.2012.01117
doi: 10.1002/j.1875-9114.2012.01117
pubmed: 23033231
Parsons A, Daley A, Begh R, Aveyard P (2010) Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ 340:b5569. https://doi.org/10.1136/bmj.b5569
doi: 10.1136/bmj.b5569
pubmed: 20093278
pmcid: 2809841
Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016) Inflammation, fracture and bone repair. Bone 86:119–130. https://doi.org/10.1016/j.bone.2016.02.020
doi: 10.1016/j.bone.2016.02.020
pubmed: 26946132
pmcid: 4833637
Lin TH, Tamaki Y, Pajarinen J et al (2014) Chronic inflammation in biomaterial-induced periprosthetic osteolysis: NF-κB as a therapeutic target. Acta Biomater 10:1–10. https://doi.org/10.1016/j.actbio.2013.09.034
doi: 10.1016/j.actbio.2013.09.034
pubmed: 24090989
Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339:189–195. https://doi.org/10.1007/s00441-009-0832-8
doi: 10.1007/s00441-009-0832-8
pubmed: 19649655
Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Väänänen HK (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369. https://doi.org/10.1074/jbc.M314324200
doi: 10.1074/jbc.M314324200
pubmed: 14970229
Martin T, Gooi JH, Sims NA (2009) Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr 19:73–88. https://doi.org/10.1615/critreveukargeneexpr.v19.i1.40
doi: 10.1615/critreveukargeneexpr.v19.i1.40
pubmed: 19191758
Stine KC, Wahl EC, Liu L et al (2014) Cisplatin inhibits bone healing during distraction osteogenesis. J Orthop Res 32:464–470. https://doi.org/10.1002/jor.22527
doi: 10.1002/jor.22527
pubmed: 24259375
Morcuende JA, Gomez P, Stack J et al (2004) Effect of chemotherapy on segmental bone healing enhanced by rhBMP-2. Iowa Orthop J 24:36–42
pubmed: 15296204
pmcid: 1888415
Xian CJ, Howarth GS, Cool JC, Foster BK (2004) Effects of acute 5-fluorouracil chemotherapy and insulin-like growth factor-I pretreatment on growth plate cartilage and metaphyseal bone in rats. Bone 35:739–749. https://doi.org/10.1016/j.bone.2004.04.027
doi: 10.1016/j.bone.2004.04.027
pubmed: 15336611
Xian CJ, Cool JC, Pyragius T, Foster BK (2006) Damage and recovery of the bone growth mechanism in young rats following 5-fluorouracil acute chemotherapy. J Cell Biochem 99:1688–1704. https://doi.org/10.1002/jcb.20889
doi: 10.1002/jcb.20889
pubmed: 16888818
Raghu Nadhanan R, Abimosleh SM, Su YW, Scherer MA, Howarth GS, Xian CJ (2012) Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss. Am J Physiol Endocrinol Metab 302:E1440–E1449. https://doi.org/10.1152/ajpendo.00587.2011
doi: 10.1152/ajpendo.00587.2011
pubmed: 22436700
Henemyre CL, Scales DK, Hokett SD et al (2003) Nicotine stimulates osteoclast resorption in a porcine marrow cell model. J Periodontol 74(10):1440–1446. https://doi.org/10.1902/jop.2003.74.10.1440
doi: 10.1902/jop.2003.74.10.1440
pubmed: 14653389
Warner JT, Evans WD, Webb DK, Bell W, Gregory JW (1999) Relative osteopenia after treatment for acute lymphoblastic leukemia. Pediatr Res 45:544–551. https://doi.org/10.1203/00006450-199904010-00014
doi: 10.1203/00006450-199904010-00014
pubmed: 10203147
Banfi A, Podestà M, Fazzuoli L et al (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92:2419. https://doi.org/10.1002/1097-0142(20011101)92:9%3c2419::aid-cncr1591%3e3.0.co;2-k
doi: 10.1002/1097-0142(20011101)92:9<2419::aid-cncr1591>3.0.co;2-k
pubmed: 11745299
Sikora M, Baranowska-Bosiacka I, Rębacz-Maron E, Olszowski T, Chlubek D (2019) The influence of the place of residence, smoking and alcohol consumption on bone mineral content in the facial skeleton. J Trace Elem Med Biol 51:115–122. https://doi.org/10.1016/j.jtemb.2018.10.012
doi: 10.1016/j.jtemb.2018.10.012
pubmed: 30466919
Cunningham RS, Bell R (2000) Nutrition in cancer: an overview. Semin Oncol Nurs 16:90–98. https://doi.org/10.1053/on.2000.7141
doi: 10.1053/on.2000.7141
pubmed: 10842777
Cortellini S, Favril C, De Nutte M, Teughels W, Quirynen M (2019) Patient compliance as a risk factor for the outcome of implant treatment. Periodontol 2000 81(1):209–225. https://doi.org/10.1111/prd.12293
doi: 10.1111/prd.12293
pubmed: 31407429