Decoupling of microbial community dynamics and functions in Arctic peat soil exposed to short term warming.
microbial community
permafrost
species diversity
stochastic
temperature gradient
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
10 2021
10 2021
Historique:
revised:
26
07
2021
received:
13
04
2021
accepted:
30
07
2021
pubmed:
14
8
2021
medline:
21
10
2021
entrez:
13
8
2021
Statut:
ppublish
Résumé
Temperature is an important factor governing microbe-mediated carbon feedback from permafrost soils. The link between taxonomic and functional microbial responses to temperature change remains elusive due to the lack of studies assessing both aspects of microbial ecology. Our previous study reported microbial metabolic and trophic shifts in response to short-term temperature increases in Arctic peat soil, and linked these shifts to higher CH
Substances chimiques
Soil
0
Carbon Dioxide
142M471B3J
Methane
OP0UW79H66
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5094-5104Informations de copyright
© 2021 Deutsches Geoforschungszentrum Potsdam. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Angilletta, M. J., Wilson, R. S., Navas, C. A., & James, R. S. (2003). Tradeoffs and the evolution of thermal reaction norms. Trends in Ecology & Evolution, 18(5), 234-240. https://doi.org/10.1016/S0169-5347(03)00087-9
Bender, K. M., Svenning, M. M., Hu, Y., Richter, A., Schückel, J., Jørgensen, B., Liebner, S., & Tveit, A. T. (2009). Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Global Change Biology, 15(12), 2950-2957. https://doi.org/10.1111/j.1365-2486.2009.01882.x
Bender, K. M., Svenning, M. M., Hu, Y., Richter, A., Schückel, J., Jørgensen, B., Liebner, S., & Tveit, A. T.. (2021). Microbial responses to herbivory-induced vegetation changes in a high-Arctic peatland. Polar Biology, 44(5), 899-911. https://doi.org/10.1007/s00300-021-02846-z
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., … Lantuit, H. (2019). Permafrost is warming at a global scale. Nature Communications, 10, 264. https://doi.org/10.1038/s41467-018-08240-4
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/Nmeth.F.303
Chen, J., Luo, Y., Xia, J., Jiang, L., Zhou, X., Lu, M., Liang, J., Shi, Z., Shelton, S., & Cao, J. (2015). Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032. https://doi.org/10.1038/srep18032
Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C., & Patterson, C. M. (2015). Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere, 6(8), art130. https://doi.org/10.1890/ES15-00217.1
Deltedesco, E., Keiblinger, K. M., Piepho, H.-P., Antonielli, L., Pötsch, E. M., Zechmeister-Boltenstern, S., & Gorfer, M. (2020). Soil microbial community structure and function mainly respond to indirect effects in a multifactorial climate manipulation experiment. Soil Biology & Biochemistry, 142, 107704. https://doi.org/10.1016/j.soilbio.2020.107704
Fischbach, M. A., & Sonnenburg, J. L. (2011). Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host & Microbe, 10(4), 336-347. https://doi.org/10.1016/j.chom.2011.10.002
Frey, S. D., Lee, J., Melillo, J. M., & Six, J. (2013). The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, 3(4), 395-398. https://doi.org/10.1038/Nclimate1796
Frindte, K., Pape, R., Werner, K., Löffler, J., & Knief, C. (2019). Temperature and soil moisture control microbial community composition in an arctic-alpine ecosystem along elevational and micro-topographic gradients. The ISME Journal, 13(8), 2031-2043. https://doi.org/10.1038/s41396-019-0409-9
Ganzert, L., Jurgens, G., Munster, U., & Wagner, D. (2007). Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiology Ecology, 59(2), 476-488. https://doi.org/10.1111/j.1574-6941.2006.00205.x
Garcia, F. C., Bestion, E., Warfield, R., & Yvon-Durocher, G. (2018). Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 115(43), 10989-10999. https://doi.org/10.1073/pnas.1805518115
Graham, D. E., Wallenstein, M. D., Vishnivetskaya, T. A., Waldrop, M. P., Phelps, T. J., Pfiffner, S. M., Onstott, T. C., Whyte, L. G., Rivkina, E. M., Gilichinsky, D. A., Elias, D. A., Mackelprang, R., VerBerkmoes, N. C., Hettich, R. L., Wagner, D., Wullschleger, S. D., & Jansson, J. K. (2012). Microbes in thawing permafrost: The unknown variable in the climate change equation. The ISME Journal, 6(4), 709-712. https://doi.org/10.1038/ismej.2011.163
Heinze, J., Gensch, S., Weber, E., & Joshi, J. (2017). Soil temperature modifies effects of soil biota on plant growth. Journal of Plant Ecology, 10(5), 808-821. https://doi.org/10.1093/jpe/rtw097
Herlemann, D. P. R., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. The ISME Journal, 5(10), 1571-1579. https://doi.org/10.1038/ismej.2011.41
Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z., & Yin, Y. (2018). dbCAN-seq: A database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Research, 46(D1), D516-D521. https://doi.org/10.1093/nar/gkx894
Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A. M., Jess, M., & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B-Biological Sciences, 367(1596), 1665-1679. https://doi.org/10.1098/rstb.2012.0005
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., & Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573-6593. https://doi.org/10.5194/bg-11-6573-2014
Juottonen, H., Tuittila, E. S., Juutinen, S., Fritze, H., & Yrjala, K. (2008). Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. The ISME Journal, 2(11), 1157-1168. https://doi.org/10.1038/ismej.2008.66
Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh, B. K., Subke, J.-A., Wookey, P. A., Ågren, G. I., Sebastià, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A. T., Salinas, N., & Hartley, I. P. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature, 513(7516), 81-84. https://doi.org/10.1038/nature13604
Kassambara, A. (2020). ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr
Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M., & McCue, L. A. (2020). ATLAS: A Snakemake workflow for assembly, annotation, and genomic binning of metagenome sequence data. BMC Bioinformatics, 21(1), 257. https://doi.org/10.1186/s12859-020-03585-4
Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814-821. https://doi.org/10.1038/nbt.2676
Limberger, R., Low-Decarie, E., & Fussmann, G. F. (2014). Final thermal conditions override the effects of temperature history and dispersal in experimental communities. Proceedings of the Royal Society B-Biological Sciences, 281(1793), 20141540. https://doi.org/10.1098/rspb.2014.1540
Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in biodiversity experiments. Nature, 412(6842), 72-76. https://doi.org/10.1038/35083573
Louca, S., Polz, M. F., Mazel, F., Albright, M. B. N., Huber, J. A., O’Connor, M. I., Ackermann, M., Hahn, A. S., Srivastava, D. S., Crowe, S. A., Doebeli, M., & Parfrey, L. W. (2018). Function and functional redundancy in microbial systems. Nature Ecology & Evolution, 2(6), 936-943. https://doi.org/10.1038/s41559-018-0519-1
Mackelprang, R., Waldrop, M. P., DeAngelis, K. M., David, M. M., Chavarria, K. L., Blazewicz, S. J., Rubin, E. M., & Jansson, J. K. (2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature, 480(7377), 368-371. https://doi.org/10.1038/Nature10576
MacLean, H. J., Sorensen, J. G., Kristensen, T. N., Loeschcke, V., Beedholm, K., Kellermann, V., & Overgaard, J. (2019). Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philosophical Transactions of the Royal Society B-Biological Sciences, 374(1778), 20180548. https://doi.org/10.1098/rstb.2018.0548
Metje, M., & Frenzel, P. (2007). Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environmental Microbiology, 9(4), 954-964. https://doi.org/10.1111/j.1462-2920.2006.01217.x
Norberg, J., Swaney, D. P., Dushoff, J., Lin, J., Casagrandi, R., & Levin, S. A. (2001). Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11376-11381. https://doi.org/10.1073/pnas.171315998
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2019). vegan: Community ecology package (R package version 2.5-6). https://CRAN.R-project.org/package=vegan
Oliverio, A. M., Bradford, M. A., & Fierer, N. (2017). Identifying the microbial taxa which consistently respond to soil warming across time and space. Global Change Biology, 23, 2117-2129. https://doi.org/10.1111/gcb.13557
Parain, E. C., Gray, S. M., & Bersier, L. F. (2019). The effects of temperature and dispersal on species diversity in natural microbial metacommunities. Scientific Reports, 9, 18286. https://doi.org/10.1038/s41598-019-54866-9
Prater, J. L., Chanton, J. P., & Whiting, G. J. (2007). Variation in methane production pathways associated with permafrost decomposition in collapse scar bogs of Alberta, Canada. Global Biogeochemical Cycles, 21(4), GB4004. https://doi.org/10.1029/2006gb002866
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. https://doi.org/10.1093/nar/gks1219R
R Core Team (2019). R: A language and environment for statistical computing. R foundation for statistical computing. (Version 3.5.3). Vienna, Austria. http://www.R-project.org
Radujković, D., Verbruggen, E., Sigurdsson, B. D., Leblans, N. I. W., Janssens, I. A., Vicca, S., & Weedon, J. T. (2018). Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiology Ecology, 94(2), fix174. https://doi.org/10.1093/femsec/fix174
Rainer, E. M., Seppey, C. V. W., Tveit, A. T., & Svenning, M. M. (2020). Methanotroph populations and CH4 oxidation potentials in high-Arctic peat are altered by herbivory induced vegetation change. FEMS Microbiology Ecology, 96(10), fiaa140. https://doi.org/10.1093/femsec/fiaa140
Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., & Zechmeister-Boltenstern, S. (2011). Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology & Biochemistry, 43(7), 1417-1425. https://doi.org/10.1016/j.soilbio.2011.03.005
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/Aem.01541-09
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. (2015). Climate change and the permafrost carbon feedback. Nature, 520(7546), 171-179. https://doi.org/10.1038/nature14338
Selmants, P. C., Adair, K. L., Litton, C. M., Giardina, C. P., & Schwartz, E. (2016). Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests. Ecosphere, 7(4), e01296. https://doi.org/10.1002/ecs2.1296
Sheik, C. S., Beasley, W. H., Elshahed, M. S., Zhou, X. H., Luo, Y. Q., & Krumholz, L. R. (2011). Effect of warming and drought on grassland microbial communities. The ISME Journal, 5(10), 1692-1700. https://doi.org/10.1038/ismej.2011.32
Steinberg, L. M., & Regan, J. M. (2008). Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Applied and Environmental Microbiology, 74(21), 6663-6671. https://doi.org/10.1128/AEM.00553-08
Stone, M. M., Weiss, M. S., Goodale, C. L., Adams, M. B., Fernandez, I. J., German, D. P., & Allison, S. D. (2012). Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Global Change Biology, 18(3), 1173-1184. https://doi.org/10.1111/j.1365-2486.2011.02545.x
Tveit, A., Schwacke, R., Svenning, M. M., & Urich, T. (2013). Organic carbon transformations in high-Arctic peat soils: Key functions and microorganisms. The ISME Journal, 7(2), 299-311. https://doi.org/10.1038/ismej.2012.99
Tveit, A., Urich, T., Frenzel, P., & Svenning, M. M. (2015). Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proceedings of the National Academy of Sciences of the United States of America, 112(19), E2507-E2516. https://doi.org/10.1073/pnas.1420797112
Wang, J.-T., Cao, P., Hu, H.-W., Li, J., Han, L.-L., Zhang, L.-M., Zheng, Y.-M., & He, J.-Z. (2015). Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microbial Ecology, 69(1), 135-145. https://doi.org/10.1007/s00248-014-0465-7
Westermann, S., Lüers, J., Langer, M., Piel, K., & Boike, J. (2009). Soil temperature time series at station P2 near Ny-Ålesund. Svalbard, Norway., https://doi.org/10.1594/PANGAEA.746704.
Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Wu, Y., Ma, B., Zhou, L., Wang, H., Xu, J., Kemmitt, S., & Brookes, P. C. (2009). Changes in the soil microbial community structure with latitude in eastern China, based on phospholipid fatty acid analysis. Applied Soil Ecology, 43(2), 234-240. https://doi.org/10.1016/j.apsoil.2009.08.002
Yang, S. (2020). otuSummary: Summarizing OTU table regarding the composition, abundance and beta diversity of abundant and rare biospheres. R package version 0.1.1. https://CRAN.R-project.org/package=otuSummary
Yang, S., Liebner, S., Alawi, M., Ebenhoh, O., & Wagner, D. (2014). Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. Journal of Microbiological Methods, 103, 3-5. https://doi.org/10.1016/j.mimet.2014.05.006
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., & del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 507(7493), 488-491. https://doi.org/10.1038/nature13164