Paecilomyces variotii xylanase production, purification and characterization with antioxidant xylo-oligosaccharides production.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 08 2021
Historique:
received: 06 03 2021
accepted: 22 07 2021
entrez: 14 8 2021
pubmed: 15 8 2021
medline: 12 11 2021
Statut: epublish

Résumé

Paecilomyces variotii xylanase was, produced in stirred tank bioreactor with yield of 760 U/mL and purified using 70% ammonium sulfate precipitation and ultra-filtration causing 3.29-fold purification with 34.47% activity recovery. The enzyme purity was analyzed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirming its monomeric nature as single band at 32 KDa. Zymography showed xylan hydrolysis activity at the same band. The purified enzyme had optimum activity at 60 °C and pH 5.0. The pH stability range was 5-9 and the temperature stability was up 70 °C. Fe

Identifiants

pubmed: 34389757
doi: 10.1038/s41598-021-95965-w
pii: 10.1038/s41598-021-95965-w
pmc: PMC8363652
doi:

Substances chimiques

Antioxidants 0
Glucuronates 0
Oligosaccharides 0
xylooligosaccharide 0
Endo-1,4-beta Xylanases EC 3.2.1.8

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

16468

Informations de copyright

© 2021. The Author(s).

Références

Subramaniyan, S. & Prema, P. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 33–64 (2002).
pubmed: 11958335 doi: 10.1080/07388550290789450
Topakas, E., Katapodis, P., Kekos, D., Macris, B. J. & Christakopoulos, P. Production and partial characterization of xylanase by Sporotrichum thermophile under solid-state fermentation. World J. Microbiol. Biotechnol. 19, 195–198 (2003).
doi: 10.1023/A:1023207429410
Shah, A. R., Shah, R. K. & Madamwar, D. Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresour. Technol. 97, 2047–2053 (2006).
pubmed: 16307877 doi: 10.1016/j.biortech.2005.10.006
Verma, D., Anand, A. & Satyanarayana, T. Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars. Appl. Biochem. Biotechnol. 170, 119–130 (2013).
pubmed: 23479291 doi: 10.1007/s12010-013-0174-6
Uday, U. S. P., Choudhury, P., Bandyopadhyay, T. K. & Bhunia, B. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041–1054 (2016).
pubmed: 26529189 doi: 10.1016/j.ijbiomac.2015.10.086
Bajaj, B. K. & Manhas, K. Production and characterization of xylanase from Bacillus licheniformis P11 (C) with potential for fruit juice and bakery industry. Biocatal. Agric. Biotechnol. 1, 330–337 (2012).
doi: 10.1016/j.bcab.2012.07.003
Butt, M. S., Tahir-Nadeem, M., Ahmad, Z. & Sultan, M. T. Xylanases and their application in baking industry. Food Technol. Biotechnol. 46, 22–31 (2008).
Kumar, V. & Satyanarayana, T. Production of thermo-alkali-stable xylanase by a novel polyextremophilic Bacillus halodurans TSEV1 in cane molasses medium and its applicability in making whole wheat bread. Bioprocess Biosyst. Eng. 37, 1043–1053 (2014).
pubmed: 24297158 doi: 10.1007/s00449-013-1075-3
Silva, J. P. A., Mussatto, S. I., Roberto, I. C. & Teixeira, J. A. Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew. Energy 37, 259–265 (2012).
doi: 10.1016/j.renene.2011.06.032
Zhao, L. C., Wang, Y., Lin, J. F. & Guo, L. Q. Adsorption and kinetic behavior of recombinant multifunctional xylanase in hydrolysis of pineapple stem and bagasse and their hemicellulose for Xylo-oligosaccharide production. Bioresour. Technol. 110, 343–348 (2012).
pubmed: 22342034 doi: 10.1016/j.biortech.2012.01.076
Davani-Davari, D. et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 8, 1–27 (2019).
doi: 10.3390/foods8030092
Sheu, W. H. H., Lee, I. T., Chen, W. & Chan, Y. C. Effects of xylooligosaccharides in type 2 diabetes mellitus. J. Nutr. Sci. Vitaminol. 54, 396–401 (2008).
pubmed: 19001772 doi: 10.3177/jnsv.54.396
Vázquez, M. J., Alonso, J. L., Domínguez, H. & Parajó, J. C. Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of Eucalyptus wood. Food Biotechnol. 16, 91–105 (2002).
doi: 10.1081/FBT-120014321
Akhtar, M. S. & Swamy, M. K. Anticancer plants: Natural products and biotechnological implements. Anticancer Plants Nat. Prod. Biotechnol. Implements 2, 1–564 (2018).
Jun, H., Kieselbach, T. & Jönsson, L. J. Enzyme production by filamentous fungi: Analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb. Cell Fact. 10, 1–10 (2011).
doi: 10.1186/1475-2859-10-68
Yazdanpanah, L. & Mohamadi, N. Antifungal activity of clove essential oil from Syzygium aromaticum on Paecilomyces variotii agent of pistachio dieback. J. Biodivers. Environ. Sci 4, 42–45 (2014).
Moreno-Gavíra, A., Huertas, V., Diánez, F., Santos, M. & Sánchez-Montesinos, B. Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants 9, 1–28 (2020).
doi: 10.3390/plants9121746
Luangsa-ard, J. J., Manoch, L., Hywel-jones, N., Artjariyasripong, S. & Samson, R. A. Thermotolerant and thermoresistant paecilomyces and its teleomorphic states isolated from Thai forest and mountain soils. Nat. Sci. 101, 94–101 (2004).
Yang, S. Q. et al. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresour. Technol. 97, 1794–1800 (2006).
pubmed: 16230011 doi: 10.1016/j.biortech.2005.09.007
Laemmli, U. K. Cleavage of structura l proteins during the assembly of the head of bacteriop hage. Nature T4(227), 680–685 (1970).
doi: 10.1038/227680a0
Raj, A., Kumar, S. & Singh, S. K. A highly thermostable xylanase from Stenotrophomonas maltophilia: Purification and partial characterization. Enzyme Res. 2013, 2 (2013).
doi: 10.1155/2013/429305
Kumar, S. et al. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech 7, 1–12 (2017).
doi: 10.1007/s13205-017-0615-y
Detns, R. C. et al. Use of dinitrosaiicyiic acid reagent for determination of reducing sugar.
Bailey, M. J., Biely, P. & Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992).
doi: 10.1016/0168-1656(92)90074-J
Bradford, M. M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
pubmed: 942051 doi: 10.1016/0003-2697(76)90527-3
Lineweaver, H. & Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934).
doi: 10.1021/ja01318a036
Lee, D. S. et al. Characterization and pH-dependent substrate specificity of alkalophilic xylanase from Bacillus alcalophilus. J. Ind. Microbiol. Biotechnol. 39, 1465–1475 (2012).
pubmed: 22763748 doi: 10.1007/s10295-012-1159-0
Al-Saman, M. A., Abdella, A., Mazrou, K. E., Tayel, A. A. & Irmak, S. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). J. Food Meas. Charact. 13, 3221–3229 (2019).
doi: 10.1007/s11694-019-00244-y
Amir, A., Arif, M. & Pande, V. Purification and characterization of xylanase from Aspergillus fumigatus isolated from soil. Afr. J. Biotechnol. 12, 3049–3057 (2013).
Bejar, S. & Hmida-Sayari, A. Expression of A. niger US368 xylanase in E. coli: Purification, characterization and copper activation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2014.12.005 (2014).
doi: 10.1016/j.ijbiomac.2014.12.005 pubmed: 25530001
Knob, A., Beitel, S. M., Fortkamp, D., Terrasan, C. R. F. & De Almeida, A. F. Production, purification, and characterization of a major penicillium glabrum xylanase using brewer’s spent grain as substrate. Biomed Res. Int. 2013, 2 (2013).
doi: 10.1155/2013/728735
Wang, S. Y., Hu, W., Lin, X. Y., Wu, Z. H. & Li, Y. Z. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: Gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 93, 1503–1512 (2012).
pubmed: 21792591 doi: 10.1007/s00253-011-3480-3
Wang, S. L. et al. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb. Technol. 33, 917–925 (2003).
doi: 10.1016/S0141-0229(03)00246-1
Evstatieva, Y., Nikolova, D., Ilieva, S., Getov, L. & Savov, V. I Identification and characterization of α-amylase and endoxylanase, produced by Aspergillus Mutant strains. Biotechnol. Biotechnol. 24, 613–617 (2014).
doi: 10.1080/13102818.2010.10817908
Sanghi, A., Garg, N., Gupta, V. K., Mittal, A., & Kuhad, R. C. (2010). One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash. Braz. J. Microbiol. 9416782476, 467–476 (2010).
Menon, G., Mody, K., Keshri, J. & Jha, B. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol. Bioprocess Eng. 15, 998–1005 (2010).
doi: 10.1007/s12257-010-0116-x
Kiddinamoorthy, J., Anceno, A. J., Haki, G. D. & Rakshit, S. K. Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. World J. Microbiol. Biotechnol. 24, 605–612 (2008).
doi: 10.1007/s11274-007-9516-2
Ko, C. H. et al. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98, 2727–2733 (2007).
pubmed: 17123815 doi: 10.1016/j.biortech.2006.09.034
Walia, A., Guleria, S., Mehta, P., Chauhan, A. & Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 7, 1–12 (2017).
doi: 10.1007/s13205-016-0584-6
Chipeta, Z. A., Du Preez, J. C., Szakacs, G. & Christopher, L. Xylanase production by fungal strains on spent sulphite liquor. Appl. Microbiol. Biotechnol. 69, 71–78 (2005).
pubmed: 15944854 doi: 10.1007/s00253-005-1961-y
Coelho, G. D. & Carmona, E. C. Xylanolytic complex from Aspergillus giganteus: Production and characterization. J. Basic Microbiol. 43, 269–277 (2003).
pubmed: 12872308 doi: 10.1002/jobm.200390030
Bajaj, B. K. & Sharma, P. An alkali-thermotolerant extracellular protease from a newly isolated Streptomyces sp. DP2. N. Biotechnol. 28, 725–732 (2011).
pubmed: 21232644 doi: 10.1016/j.nbt.2011.01.001
Turner, P., Mamo, G. & Karlsson, E. N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6, 1–23 (2007).
doi: 10.1186/1475-2859-6-9
Ito, K., Ogasawara, H., Sugimoto, T. & Ishikawa, T. Purification and properties of acid stable Xylanases from Aspergillus kawachii. Biosci. Biotechnol. Biochem. 56, 547–550 (1992).
pubmed: 27280644 doi: 10.1271/bbb.56.547
Fernández-Espinar, M. et al. Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Appl. Microbiol. Biotechnol. 42, 555–562 (1994).
doi: 10.1007/BF00173920
Pal, A. & Khanum, F. Purification of xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochem. 46, 879–887 (2011).
doi: 10.1016/j.procbio.2010.12.009
Betini, J. H. A. et al. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst. Eng. 32, 819–824 (2009).
pubmed: 19271244 doi: 10.1007/s00449-009-0308-y
de Carvalho Peixoto-Nogueira, S. et al. Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J. Ind. Microbiol. Biotechnol. 36, 149–155 (2009).
doi: 10.1007/s10295-008-0482-y
Fang, H. Y., Chang, S. M., Lan, C. H. & Fang, T. J. Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochem. 43, 49–55 (2008).
doi: 10.1016/j.procbio.2007.10.015
Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005).
pubmed: 15652973 doi: 10.1016/j.femsre.2004.06.005
Li, F., Xie, J., Zhang, X. & Zhao, L. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis. J. Microbiol. Biotech. 25, 11–17 (2015).
doi: 10.4014/jmb.1402.02055
Lu, F. et al. Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour. Technol. 99, 5938–5941 (2008).
pubmed: 18068974 doi: 10.1016/j.biortech.2007.10.051
Fialho, M. B. & Carmona, E. C. Purification and characterization of xylanases from Aspergillus giganteus. Folia Microbiol. 49, 13–18 (2004).
doi: 10.1007/BF02931639
Sharma, A., Adhikari, S. & Satyanarayana, T. Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J. Microbiol. Biotechnol. 23, 483–490 (2007).
doi: 10.1007/s11274-006-9250-1
Teixeira, R. S. S., Siqueira, F. G., De Souza, M. V., Filho, E. X. F. & Da Silva Bon, E. P. Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. J. Ind. Microbiol. Biotechnol. 37, 1041–1051 (2010).
pubmed: 20549295 doi: 10.1007/s10295-010-0751-4
Kui, H. et al. Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl. Biochem. Biotechnol. 162, 953–965 (2010).
pubmed: 19838860 doi: 10.1007/s12010-009-8815-5
Hmida-Sayari, A., Taktek, S., Elgharbi, F. & Bejar, S. Biochemical characterization, cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain. Process Biochem. 47, 1839–1847 (2012).
doi: 10.1016/j.procbio.2012.06.010
Manikandan, K. et al. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15, 1951–1960 (2006).
pubmed: 16823036 pmcid: 2242578 doi: 10.1110/ps.062220206
Lv, Z., Yang, J. & Yuan, H. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSD5. Enzyme Microb. Technol. 43, 343–348 (2008).
doi: 10.1016/j.enzmictec.2008.06.001
Park, I. & Cho, J. Partial characterization of extracellular xylanolytic activity derived from Paenibacillus sp. KIJ1. Afr. J. Microbiol. Res. 4, 1257–1264 (2010).
Spurway, T. D. et al. Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding *. 272, 17523–17530 (1997).
Yi, X. et al. Hyperexpression of two Aspergillus niger xylanase genes in Escherichia coli and characterization of the gene products. Braz. J. Microbiol. 41, 778–786 (2010).
pubmed: 24031555 pmcid: 3768633 doi: 10.1590/S1517-83822010000300030
Miao, Y., Li, J., Xiao, Z., Shen, Q. & Zhang, R. Characterization and identification of the xylanolytic enzymes from Aspergillus fumigatus Z5. BMC Microbiol. 15, 1–12 (2015).
doi: 10.1186/s12866-015-0463-z
Nagar, S., Mittal, A., Kumar, D. & Gupta, V. K. Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205. Int. J. Biol. Macromol. 50, 414–420 (2012).
pubmed: 22227307 doi: 10.1016/j.ijbiomac.2011.12.026
De Souza Moreira, L. R. et al. Two β-xylanases from Aspergillus terreus: Characterization and influence of phenolic compounds on xylanase activity. Fungal Genet. Biol. 60, 46–52 (2013).
pubmed: 23892064 doi: 10.1016/j.fgb.2013.07.006
Knob, A., Terrasan, C. R. F. & Carmona, E. C. β-Xylosidases from filamentous fungi: An overview. World J. Microbiol. Biotechnol. 26, 389–407 (2010).
doi: 10.1007/s11274-009-0190-4
Dutta, T. et al. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: Production, purification and characterization. Lett. Appl. Microbiol. 44, 206–211 (2007).
pubmed: 17257262 doi: 10.1111/j.1472-765X.2006.02042.x
Vieira Cardoso, O. A. & Ferreira Filho, E. X. Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiol. Lett. 223, 309–314 (2003).
doi: 10.1016/S0378-1097(03)00392-6
Zheng, H. et al. Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1–1. J. Microbiol. Biotechnol. 22, 930–938 (2012).
pubmed: 22580312 doi: 10.4014/jmb.1110.10060
Sharma, K. et al. acacia xylan as a substitute for commercially available xylan and its application in the production of xylooligosaccharides. ACS Omega 5, 13729–13738 (2020).
pubmed: 32566838 pmcid: 7301597 doi: 10.1021/acsomega.0c00896
Filho, E. X. F., Puls, J. & Coughlan, M. P. Biochemical characteristics of two endo-beta-1,4-xylanases produced by Penicillium capsulatum. J. Ind. Microbiol. 11, 171–180 (1993).
doi: 10.1007/BF01583719
Chen, H., Yan, X., Liu, X., Wang, M. & Huang, H. Purification and characterization of novel bifunctional xylanase xylan III isolated from Aspergillus niger A-25. J. Microb. Biotechnol. 16(7), 1132–1138 (2006).
Bai, W., Xue, Y., Zhou, C. & Ma, Y. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol. Appl. Biochem. 62, 208–217 (2015).
pubmed: 24975401 doi: 10.1002/bab.1265
Lo Leggio, L. et al. Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS Lett. 509, 303–308 (2001).
pubmed: 11741607 doi: 10.1016/S0014-5793(01)03177-5
Qiu, J. et al. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH. Microbiol. Res. 182, 1–7 (2016).
pubmed: 26686608 doi: 10.1016/j.micres.2015.09.002
Lin, Y. S., Tseng, M. J. & Lee, W. C. Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochem. 46, 2117–2121 (2011).
doi: 10.1016/j.procbio.2011.08.008
Akpinar, O., Erdogan, K. & Bostanci, S. Enzymatic production of Xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009).
doi: 10.1016/j.fbp.2008.09.002
Yang, Y. et al. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33. Microb. Cell Fact. 18, 1–13 (2019).
doi: 10.1186/s12934-019-1212-z
Bian, J. et al. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 127, 236–241 (2013).
pubmed: 23131647 doi: 10.1016/j.biortech.2012.09.112
Caparrós, S., Garrote, G., Ariza, J., Díaz, M. J. & López, F. Xylooligosaccharides production from Arundo donax. J. Agric. Food Chem. 55, 5536–5543 (2007).
pubmed: 17567138 doi: 10.1021/jf063159p
Iliev, I., Vasileva, T., Bivolarski, V., Momchilova, A. & Ivanova, I. Metabolic profiling of xylooligosaccharides by lactobacilli. Polymers 12, 1–18 (2020).
doi: 10.3390/polym12102387
Aachary, A. A. & Prapulla, S. G. Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 10, 2–16 (2011).
doi: 10.1111/j.1541-4337.2010.00135.x
Rao, R. S. P. & Muralikrishna, G. Water soluble feruloyl arabinoxylans from rice and ragi: Changes upon malting and their consequence on antioxidant activity. Phytochemistry 67, 91–99 (2006).
pubmed: 16289622 doi: 10.1016/j.phytochem.2005.09.036
Pristov, J. B., Mitrović, A. & Spasojević, I. A comparative study of antioxidative activities of cell-wall polysaccharides. Carbohydr. Res. 346, 2255–2259 (2011).
pubmed: 21880306 doi: 10.1016/j.carres.2011.07.015
Chen, Y., Xie, M. Y., Nie, S. P., Li, C. & Wang, Y. X. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. 107, 231–241 (2008).
doi: 10.1016/j.foodchem.2007.08.021

Auteurs

Asmaa Abdella (A)

Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.

Samah Ramadan (S)

Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt.

Ragaa A Hamouda (RA)

Department of Biology, Collage of Sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia.
Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.

Amna A Saddiq (AA)

College of Science, Department of Biology, University of Jeddah, Jeddah, Saudi Arabia.

Nuha M Alhazmi (NM)

College of Science, Department of Biology, University of Jeddah, Jeddah, Saudi Arabia.

Mahmoud A Al-Saman (MA)

Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt. alsaman20032002@yahoo.com.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Animals Flax Chickens Dietary Supplements Endo-1,4-beta Xylanases
Sorghum Antioxidants Phosphorus Fertilizers Flavonoids

Classifications MeSH