Paecilomyces variotii xylanase production, purification and characterization with antioxidant xylo-oligosaccharides production.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
13 08 2021
13 08 2021
Historique:
received:
06
03
2021
accepted:
22
07
2021
entrez:
14
8
2021
pubmed:
15
8
2021
medline:
12
11
2021
Statut:
epublish
Résumé
Paecilomyces variotii xylanase was, produced in stirred tank bioreactor with yield of 760 U/mL and purified using 70% ammonium sulfate precipitation and ultra-filtration causing 3.29-fold purification with 34.47% activity recovery. The enzyme purity was analyzed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirming its monomeric nature as single band at 32 KDa. Zymography showed xylan hydrolysis activity at the same band. The purified enzyme had optimum activity at 60 °C and pH 5.0. The pH stability range was 5-9 and the temperature stability was up 70 °C. Fe
Identifiants
pubmed: 34389757
doi: 10.1038/s41598-021-95965-w
pii: 10.1038/s41598-021-95965-w
pmc: PMC8363652
doi:
Substances chimiques
Antioxidants
0
Glucuronates
0
Oligosaccharides
0
xylooligosaccharide
0
Endo-1,4-beta Xylanases
EC 3.2.1.8
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16468Informations de copyright
© 2021. The Author(s).
Références
Subramaniyan, S. & Prema, P. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22, 33–64 (2002).
pubmed: 11958335
doi: 10.1080/07388550290789450
Topakas, E., Katapodis, P., Kekos, D., Macris, B. J. & Christakopoulos, P. Production and partial characterization of xylanase by Sporotrichum thermophile under solid-state fermentation. World J. Microbiol. Biotechnol. 19, 195–198 (2003).
doi: 10.1023/A:1023207429410
Shah, A. R., Shah, R. K. & Madamwar, D. Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Bioresour. Technol. 97, 2047–2053 (2006).
pubmed: 16307877
doi: 10.1016/j.biortech.2005.10.006
Verma, D., Anand, A. & Satyanarayana, T. Thermostable and alkalistable endoxylanase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1: cloning, expression, characteristics and its applicability in generating xylooligosaccharides and fermentable sugars. Appl. Biochem. Biotechnol. 170, 119–130 (2013).
pubmed: 23479291
doi: 10.1007/s12010-013-0174-6
Uday, U. S. P., Choudhury, P., Bandyopadhyay, T. K. & Bhunia, B. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041–1054 (2016).
pubmed: 26529189
doi: 10.1016/j.ijbiomac.2015.10.086
Bajaj, B. K. & Manhas, K. Production and characterization of xylanase from Bacillus licheniformis P11 (C) with potential for fruit juice and bakery industry. Biocatal. Agric. Biotechnol. 1, 330–337 (2012).
doi: 10.1016/j.bcab.2012.07.003
Butt, M. S., Tahir-Nadeem, M., Ahmad, Z. & Sultan, M. T. Xylanases and their application in baking industry. Food Technol. Biotechnol. 46, 22–31 (2008).
Kumar, V. & Satyanarayana, T. Production of thermo-alkali-stable xylanase by a novel polyextremophilic Bacillus halodurans TSEV1 in cane molasses medium and its applicability in making whole wheat bread. Bioprocess Biosyst. Eng. 37, 1043–1053 (2014).
pubmed: 24297158
doi: 10.1007/s00449-013-1075-3
Silva, J. P. A., Mussatto, S. I., Roberto, I. C. & Teixeira, J. A. Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew. Energy 37, 259–265 (2012).
doi: 10.1016/j.renene.2011.06.032
Zhao, L. C., Wang, Y., Lin, J. F. & Guo, L. Q. Adsorption and kinetic behavior of recombinant multifunctional xylanase in hydrolysis of pineapple stem and bagasse and their hemicellulose for Xylo-oligosaccharide production. Bioresour. Technol. 110, 343–348 (2012).
pubmed: 22342034
doi: 10.1016/j.biortech.2012.01.076
Davani-Davari, D. et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 8, 1–27 (2019).
doi: 10.3390/foods8030092
Sheu, W. H. H., Lee, I. T., Chen, W. & Chan, Y. C. Effects of xylooligosaccharides in type 2 diabetes mellitus. J. Nutr. Sci. Vitaminol. 54, 396–401 (2008).
pubmed: 19001772
doi: 10.3177/jnsv.54.396
Vázquez, M. J., Alonso, J. L., Domínguez, H. & Parajó, J. C. Enzymatic processing of crude xylooligomer solutions obtained by autohydrolysis of Eucalyptus wood. Food Biotechnol. 16, 91–105 (2002).
doi: 10.1081/FBT-120014321
Akhtar, M. S. & Swamy, M. K. Anticancer plants: Natural products and biotechnological implements. Anticancer Plants Nat. Prod. Biotechnol. Implements 2, 1–564 (2018).
Jun, H., Kieselbach, T. & Jönsson, L. J. Enzyme production by filamentous fungi: Analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb. Cell Fact. 10, 1–10 (2011).
doi: 10.1186/1475-2859-10-68
Yazdanpanah, L. & Mohamadi, N. Antifungal activity of clove essential oil from Syzygium aromaticum on Paecilomyces variotii agent of pistachio dieback. J. Biodivers. Environ. Sci 4, 42–45 (2014).
Moreno-Gavíra, A., Huertas, V., Diánez, F., Santos, M. & Sánchez-Montesinos, B. Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plants 9, 1–28 (2020).
doi: 10.3390/plants9121746
Luangsa-ard, J. J., Manoch, L., Hywel-jones, N., Artjariyasripong, S. & Samson, R. A. Thermotolerant and thermoresistant paecilomyces and its teleomorphic states isolated from Thai forest and mountain soils. Nat. Sci. 101, 94–101 (2004).
Yang, S. Q. et al. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Bioresour. Technol. 97, 1794–1800 (2006).
pubmed: 16230011
doi: 10.1016/j.biortech.2005.09.007
Laemmli, U. K. Cleavage of structura l proteins during the assembly of the head of bacteriop hage. Nature T4(227), 680–685 (1970).
doi: 10.1038/227680a0
Raj, A., Kumar, S. & Singh, S. K. A highly thermostable xylanase from Stenotrophomonas maltophilia: Purification and partial characterization. Enzyme Res. 2013, 2 (2013).
doi: 10.1155/2013/429305
Kumar, S. et al. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech 7, 1–12 (2017).
doi: 10.1007/s13205-017-0615-y
Detns, R. C. et al. Use of dinitrosaiicyiic acid reagent for determination of reducing sugar.
Bailey, M. J., Biely, P. & Poutanen, K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257–270 (1992).
doi: 10.1016/0168-1656(92)90074-J
Bradford, M. M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
pubmed: 942051
doi: 10.1016/0003-2697(76)90527-3
Lineweaver, H. & Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934).
doi: 10.1021/ja01318a036
Lee, D. S. et al. Characterization and pH-dependent substrate specificity of alkalophilic xylanase from Bacillus alcalophilus. J. Ind. Microbiol. Biotechnol. 39, 1465–1475 (2012).
pubmed: 22763748
doi: 10.1007/s10295-012-1159-0
Al-Saman, M. A., Abdella, A., Mazrou, K. E., Tayel, A. A. & Irmak, S. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). J. Food Meas. Charact. 13, 3221–3229 (2019).
doi: 10.1007/s11694-019-00244-y
Amir, A., Arif, M. & Pande, V. Purification and characterization of xylanase from Aspergillus fumigatus isolated from soil. Afr. J. Biotechnol. 12, 3049–3057 (2013).
Bejar, S. & Hmida-Sayari, A. Expression of A. niger US368 xylanase in E. coli: Purification, characterization and copper activation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2014.12.005 (2014).
doi: 10.1016/j.ijbiomac.2014.12.005
pubmed: 25530001
Knob, A., Beitel, S. M., Fortkamp, D., Terrasan, C. R. F. & De Almeida, A. F. Production, purification, and characterization of a major penicillium glabrum xylanase using brewer’s spent grain as substrate. Biomed Res. Int. 2013, 2 (2013).
doi: 10.1155/2013/728735
Wang, S. Y., Hu, W., Lin, X. Y., Wu, Z. H. & Li, Y. Z. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: Gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 93, 1503–1512 (2012).
pubmed: 21792591
doi: 10.1007/s00253-011-3480-3
Wang, S. L. et al. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb. Technol. 33, 917–925 (2003).
doi: 10.1016/S0141-0229(03)00246-1
Evstatieva, Y., Nikolova, D., Ilieva, S., Getov, L. & Savov, V. I Identification and characterization of α-amylase and endoxylanase, produced by Aspergillus Mutant strains. Biotechnol. Biotechnol. 24, 613–617 (2014).
doi: 10.1080/13102818.2010.10817908
Sanghi, A., Garg, N., Gupta, V. K., Mittal, A., & Kuhad, R. C. (2010). One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash. Braz. J. Microbiol. 9416782476, 467–476 (2010).
Menon, G., Mody, K., Keshri, J. & Jha, B. Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol. Bioprocess Eng. 15, 998–1005 (2010).
doi: 10.1007/s12257-010-0116-x
Kiddinamoorthy, J., Anceno, A. J., Haki, G. D. & Rakshit, S. K. Production, purification and characterization of Bacillus sp. GRE7 xylanase and its application in eucalyptus Kraft pulp biobleaching. World J. Microbiol. Biotechnol. 24, 605–612 (2008).
doi: 10.1007/s11274-007-9516-2
Ko, C. H. et al. Paenibacillus campinasensis BL11: A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol. 98, 2727–2733 (2007).
pubmed: 17123815
doi: 10.1016/j.biortech.2006.09.034
Walia, A., Guleria, S., Mehta, P., Chauhan, A. & Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 7, 1–12 (2017).
doi: 10.1007/s13205-016-0584-6
Chipeta, Z. A., Du Preez, J. C., Szakacs, G. & Christopher, L. Xylanase production by fungal strains on spent sulphite liquor. Appl. Microbiol. Biotechnol. 69, 71–78 (2005).
pubmed: 15944854
doi: 10.1007/s00253-005-1961-y
Coelho, G. D. & Carmona, E. C. Xylanolytic complex from Aspergillus giganteus: Production and characterization. J. Basic Microbiol. 43, 269–277 (2003).
pubmed: 12872308
doi: 10.1002/jobm.200390030
Bajaj, B. K. & Sharma, P. An alkali-thermotolerant extracellular protease from a newly isolated Streptomyces sp. DP2. N. Biotechnol. 28, 725–732 (2011).
pubmed: 21232644
doi: 10.1016/j.nbt.2011.01.001
Turner, P., Mamo, G. & Karlsson, E. N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6, 1–23 (2007).
doi: 10.1186/1475-2859-6-9
Ito, K., Ogasawara, H., Sugimoto, T. & Ishikawa, T. Purification and properties of acid stable Xylanases from Aspergillus kawachii. Biosci. Biotechnol. Biochem. 56, 547–550 (1992).
pubmed: 27280644
doi: 10.1271/bbb.56.547
Fernández-Espinar, M. et al. Purification, characterization and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Appl. Microbiol. Biotechnol. 42, 555–562 (1994).
doi: 10.1007/BF00173920
Pal, A. & Khanum, F. Purification of xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochem. 46, 879–887 (2011).
doi: 10.1016/j.procbio.2010.12.009
Betini, J. H. A. et al. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst. Eng. 32, 819–824 (2009).
pubmed: 19271244
doi: 10.1007/s00449-009-0308-y
de Carvalho Peixoto-Nogueira, S. et al. Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J. Ind. Microbiol. Biotechnol. 36, 149–155 (2009).
doi: 10.1007/s10295-008-0482-y
Fang, H. Y., Chang, S. M., Lan, C. H. & Fang, T. J. Purification and characterization of a xylanase from Aspergillus carneus M34 and its potential use in photoprotectant preparation. Process Biochem. 43, 49–55 (2008).
doi: 10.1016/j.procbio.2007.10.015
Collins, T., Gerday, C. & Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005).
pubmed: 15652973
doi: 10.1016/j.femsre.2004.06.005
Li, F., Xie, J., Zhang, X. & Zhao, L. Improvement of the optimum pH of Aspergillus niger xylanase towards an alkaline pH by site-directed mutagenesis. J. Microbiol. Biotech. 25, 11–17 (2015).
doi: 10.4014/jmb.1402.02055
Lu, F. et al. Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour. Technol. 99, 5938–5941 (2008).
pubmed: 18068974
doi: 10.1016/j.biortech.2007.10.051
Fialho, M. B. & Carmona, E. C. Purification and characterization of xylanases from Aspergillus giganteus. Folia Microbiol. 49, 13–18 (2004).
doi: 10.1007/BF02931639
Sharma, A., Adhikari, S. & Satyanarayana, T. Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J. Microbiol. Biotechnol. 23, 483–490 (2007).
doi: 10.1007/s11274-006-9250-1
Teixeira, R. S. S., Siqueira, F. G., De Souza, M. V., Filho, E. X. F. & Da Silva Bon, E. P. Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. J. Ind. Microbiol. Biotechnol. 37, 1041–1051 (2010).
pubmed: 20549295
doi: 10.1007/s10295-010-0751-4
Kui, H. et al. Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl. Biochem. Biotechnol. 162, 953–965 (2010).
pubmed: 19838860
doi: 10.1007/s12010-009-8815-5
Hmida-Sayari, A., Taktek, S., Elgharbi, F. & Bejar, S. Biochemical characterization, cloning and molecular modeling of a detergent and organic solvent-stable family 11 xylanase from the newly isolated Aspergillus niger US368 strain. Process Biochem. 47, 1839–1847 (2012).
doi: 10.1016/j.procbio.2012.06.010
Manikandan, K. et al. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27: Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Sci. 15, 1951–1960 (2006).
pubmed: 16823036
pmcid: 2242578
doi: 10.1110/ps.062220206
Lv, Z., Yang, J. & Yuan, H. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSD5. Enzyme Microb. Technol. 43, 343–348 (2008).
doi: 10.1016/j.enzmictec.2008.06.001
Park, I. & Cho, J. Partial characterization of extracellular xylanolytic activity derived from Paenibacillus sp. KIJ1. Afr. J. Microbiol. Res. 4, 1257–1264 (2010).
Spurway, T. D. et al. Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding *. 272, 17523–17530 (1997).
Yi, X. et al. Hyperexpression of two Aspergillus niger xylanase genes in Escherichia coli and characterization of the gene products. Braz. J. Microbiol. 41, 778–786 (2010).
pubmed: 24031555
pmcid: 3768633
doi: 10.1590/S1517-83822010000300030
Miao, Y., Li, J., Xiao, Z., Shen, Q. & Zhang, R. Characterization and identification of the xylanolytic enzymes from Aspergillus fumigatus Z5. BMC Microbiol. 15, 1–12 (2015).
doi: 10.1186/s12866-015-0463-z
Nagar, S., Mittal, A., Kumar, D. & Gupta, V. K. Production of alkali tolerant cellulase free xylanase in high levels by Bacillus pumilus SV-205. Int. J. Biol. Macromol. 50, 414–420 (2012).
pubmed: 22227307
doi: 10.1016/j.ijbiomac.2011.12.026
De Souza Moreira, L. R. et al. Two β-xylanases from Aspergillus terreus: Characterization and influence of phenolic compounds on xylanase activity. Fungal Genet. Biol. 60, 46–52 (2013).
pubmed: 23892064
doi: 10.1016/j.fgb.2013.07.006
Knob, A., Terrasan, C. R. F. & Carmona, E. C. β-Xylosidases from filamentous fungi: An overview. World J. Microbiol. Biotechnol. 26, 389–407 (2010).
doi: 10.1007/s11274-009-0190-4
Dutta, T. et al. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: Production, purification and characterization. Lett. Appl. Microbiol. 44, 206–211 (2007).
pubmed: 17257262
doi: 10.1111/j.1472-765X.2006.02042.x
Vieira Cardoso, O. A. & Ferreira Filho, E. X. Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiol. Lett. 223, 309–314 (2003).
doi: 10.1016/S0378-1097(03)00392-6
Zheng, H. et al. Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1–1. J. Microbiol. Biotechnol. 22, 930–938 (2012).
pubmed: 22580312
doi: 10.4014/jmb.1110.10060
Sharma, K. et al. acacia xylan as a substitute for commercially available xylan and its application in the production of xylooligosaccharides. ACS Omega 5, 13729–13738 (2020).
pubmed: 32566838
pmcid: 7301597
doi: 10.1021/acsomega.0c00896
Filho, E. X. F., Puls, J. & Coughlan, M. P. Biochemical characteristics of two endo-beta-1,4-xylanases produced by Penicillium capsulatum. J. Ind. Microbiol. 11, 171–180 (1993).
doi: 10.1007/BF01583719
Chen, H., Yan, X., Liu, X., Wang, M. & Huang, H. Purification and characterization of novel bifunctional xylanase xylan III isolated from Aspergillus niger A-25. J. Microb. Biotechnol. 16(7), 1132–1138 (2006).
Bai, W., Xue, Y., Zhou, C. & Ma, Y. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5. Biotechnol. Appl. Biochem. 62, 208–217 (2015).
pubmed: 24975401
doi: 10.1002/bab.1265
Lo Leggio, L. et al. Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS Lett. 509, 303–308 (2001).
pubmed: 11741607
doi: 10.1016/S0014-5793(01)03177-5
Qiu, J. et al. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH. Microbiol. Res. 182, 1–7 (2016).
pubmed: 26686608
doi: 10.1016/j.micres.2015.09.002
Lin, Y. S., Tseng, M. J. & Lee, W. C. Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochem. 46, 2117–2121 (2011).
doi: 10.1016/j.procbio.2011.08.008
Akpinar, O., Erdogan, K. & Bostanci, S. Enzymatic production of Xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87, 145–151 (2009).
doi: 10.1016/j.fbp.2008.09.002
Yang, Y. et al. Cooperation of hydrolysis modes among xylanases reveals the mechanism of hemicellulose hydrolysis by Penicillium chrysogenum P33. Microb. Cell Fact. 18, 1–13 (2019).
doi: 10.1186/s12934-019-1212-z
Bian, J. et al. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 127, 236–241 (2013).
pubmed: 23131647
doi: 10.1016/j.biortech.2012.09.112
Caparrós, S., Garrote, G., Ariza, J., Díaz, M. J. & López, F. Xylooligosaccharides production from Arundo donax. J. Agric. Food Chem. 55, 5536–5543 (2007).
pubmed: 17567138
doi: 10.1021/jf063159p
Iliev, I., Vasileva, T., Bivolarski, V., Momchilova, A. & Ivanova, I. Metabolic profiling of xylooligosaccharides by lactobacilli. Polymers 12, 1–18 (2020).
doi: 10.3390/polym12102387
Aachary, A. A. & Prapulla, S. G. Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food Sci. Food Saf. 10, 2–16 (2011).
doi: 10.1111/j.1541-4337.2010.00135.x
Rao, R. S. P. & Muralikrishna, G. Water soluble feruloyl arabinoxylans from rice and ragi: Changes upon malting and their consequence on antioxidant activity. Phytochemistry 67, 91–99 (2006).
pubmed: 16289622
doi: 10.1016/j.phytochem.2005.09.036
Pristov, J. B., Mitrović, A. & Spasojević, I. A comparative study of antioxidative activities of cell-wall polysaccharides. Carbohydr. Res. 346, 2255–2259 (2011).
pubmed: 21880306
doi: 10.1016/j.carres.2011.07.015
Chen, Y., Xie, M. Y., Nie, S. P., Li, C. & Wang, Y. X. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem. 107, 231–241 (2008).
doi: 10.1016/j.foodchem.2007.08.021