The role of the nucleus reuniens in regulating contextual conditioning with the predator odor TMT in female rats.
Nucleus reuniens
Post-traumatic stress disorder
Predator odor stress
Stress memory
TMT
Journal
Psychopharmacology
ISSN: 1432-2072
Titre abrégé: Psychopharmacology (Berl)
Pays: Germany
ID NLM: 7608025
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
11
06
2021
accepted:
03
08
2021
pubmed:
15
8
2021
medline:
15
12
2021
entrez:
14
8
2021
Statut:
ppublish
Résumé
Experiencing intrusive distressing memories of a traumatic event(s) is a prominent symptom profile for post-traumatic stress disorder (PTSD). Understanding the neurobiological mechanisms associated with this symptom profile can be invaluable for effective treatment for PTSD. Here, we investigated the functional role of the nucleus reuniens (RE), a midline thalamic in modulating stressor-related memory. Female Long Evans rats were implanted with a cannula aimed at the RE. The RE was pharmacologically inactivated via muscimol (0.5 mM) prior to exposure to the predator odor stressor trimethylthiazoline (TMT; synthetically derived fox feces component) or water (controls) in a distinct context with bedding material (experiment 1) or no bedding (experiment 2). To measure context reactivity, the index of the contextual memory, 2 weeks following exposure to TMT, rats were re-exposed to the TMT-paired context (in the absence of TMT). In experiment 1, during context re-exposure (with bedding), inactivation of the RE had no effect on context reactivity. In experiment 2, during context re-exposure (no bedding), rats previously exposed to TMT showed decreased immobility compared to controls, indicating reactivity to the context and likely related to theincreased exploration of the environment. Rats in the TMT group that received RE inactivation showed increased immobility relative to rats that received aCSF, suggesting that muscimol pre-treatment blunted context reactivity. In conclusion, recruitment of the RE in stressor-related contextual memory appears to be dependent on the contextual environment and whether the animal is able to engage in different stress coping strategies.
Identifiants
pubmed: 34390359
doi: 10.1007/s00213-021-05957-x
pii: 10.1007/s00213-021-05957-x
pmc: PMC8629918
mid: NIHMS1745080
doi:
Substances chimiques
Muscimol
2763-96-4
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3411-3421Subventions
Organisme : NIAAA NIH HHS
ID : AA011605
Pays : United States
Organisme : NIAAA NIH HHS
ID : P60 AA011605
Pays : United States
Organisme : NIAAA NIH HHS
ID : AA026537
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA026537
Pays : United States
Organisme : NIAAA NIH HHS
ID : P50 AA011605
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Albrechet-Souza L, Gilpin NW (2019) The predator odor avoidance model of post-traumatic stress disorder in rats. Behav Pharmacol 30(2 and 3-Spec Issue):105–114. https://doi.org/10.1097/FBP.0000000000000460
doi: 10.1097/FBP.0000000000000460
pubmed: 30640179
pmcid: 6422743
APA (2013) Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC
Arakawa H (2007) Ontogeny of sex differences in defensive burying behavior in rats: effect of social isolation. Aggress Behav 33(1):38–47. https://doi.org/10.1002/ab.20165
doi: 10.1002/ab.20165
pubmed: 17441004
Breslau N, Kessler RC, Chilcoat HD, Schultz LR, Davis GC, Andreski P (1998) Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Arch Gen Psychiatry 55(7):626–632. https://doi.org/10.1001/archpsyc.55.7.626
doi: 10.1001/archpsyc.55.7.626
pubmed: 9672053
Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson S (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2):477–505
doi: 10.1016/0306-4522(94)00355-9
De Boer SF, Koolhaas JM (2003) Defensive burying in rodents: ethology, neurobiology and psychopharmacology. Eur J Pharmacol 463(1–3):145–161. https://doi.org/10.1016/s0014-2999(03)01278-0
doi: 10.1016/s0014-2999(03)01278-0
pubmed: 12600707
Eichenbaum H (2017) Prefrontal-hippocampal interactions in episodic memory. Nat Rev Neurosci 18(9):547–558. https://doi.org/10.1038/nrn.2017.74
doi: 10.1038/nrn.2017.74
pubmed: 28655882
Fitzpatrick CJ, Knox D, Liberzon I (2011) Inactivation of the prelimbic cortex enhances freezing induced by trimethylthiazoline, a component of fox feces. Behav Brain Res 221(1):320–323. https://doi.org/10.1016/j.bbr.2011.03.024
doi: 10.1016/j.bbr.2011.03.024
pubmed: 21420435
Fucich EA, Morilak DA (2018) Shock-probe defensive burying test to measure active versus passive coping style in response to an aversive stimulus in rats. Bio Protoc 8(17). https://doi.org/10.21769/BioProtoc.2998
Furtak SC, Wei SM, Agster KL, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus 17(9):709–722. https://doi.org/10.1002/hipo.20314
doi: 10.1002/hipo.20314
pubmed: 17604355
Hwa LS, Neira S, Pina MM, Pati D, Calloway R, Kash TL (2019) Predator odor increases avoidance and glutamatergic synaptic transmission in the prelimbic cortex via corticotropin-releasing factor receptor 1 signaling. Neuropsychopharmacology 44(4):766–775. https://doi.org/10.1038/s41386-018-0279-2
doi: 10.1038/s41386-018-0279-2
pubmed: 30470839
Jaramillo AA, Randall PA, Frisbee S, Besheer J (2016) Modulation of sensitivity to alcohol by cortical and thalamic brain regions. Eur J Neurosci 44(8):2569–2580. https://doi.org/10.1111/ejn.13374
doi: 10.1111/ejn.13374
pubmed: 27543844
pmcid: 5377065
Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP, Allen TA (2019) Prefrontal pathways provide top-down control of memory for sequences of events. Cell Rep 28(3):640–654. https://doi.org/10.1016/j.celrep.2019.06.053 (e646)
doi: 10.1016/j.celrep.2019.06.053
pubmed: 31315044
pmcid: 6662648
Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OFX, Antoniou K, Sousa N, Dalla C (2018) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 23(3):579–586. https://doi.org/10.1038/mp.2017.55
doi: 10.1038/mp.2017.55
pubmed: 28397837
Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62(6):593–602. https://doi.org/10.1001/archpsyc.62.6.593
doi: 10.1001/archpsyc.62.6.593
pubmed: 15939837
Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52(12):1048–1060. https://doi.org/10.1001/archpsyc.1995.03950240066012
doi: 10.1001/archpsyc.1995.03950240066012
pubmed: 7492257
Kilpatrick DG, Resnick HS, Milanak ME, Miller MW, Keyes KM, Friedman MJ (2013) National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J Trauma Stress 26(5):537–547. https://doi.org/10.1002/jts.21848
doi: 10.1002/jts.21848
pubmed: 24151000
pmcid: 4096796
Lin YJ, Chiou RJ, Chang CH (2020) The reuniens and rhomboid nuclei are required for acquisition of pavlovian trace fear conditioning in rats. eNeuro 7(3). https://doi.org/10.1523/ENEURO.0106-20.2020
Maisson DJ, Gemzik ZM, Griffin AL (2018) Optogenetic suppression of the nucleus reuniens selectively impairs encoding during spatial working memory. Neurobiol Learn Mem 155:78–85. https://doi.org/10.1016/j.nlm.2018.06.010
doi: 10.1016/j.nlm.2018.06.010
pubmed: 29940254
Mei H, Logothetis NK, Eschenko O (2018) The activity of thalamic nucleus reuniens is critical for memory retrieval, but not essential for the early phase of “off-line” consolidation. Learn Mem 25(3):129–137. https://doi.org/10.1101/lm.047134.117
doi: 10.1101/lm.047134.117
pubmed: 29449457
pmcid: 5817284
Neal S, Kent M, Bardi M, Lambert KG (2018) Enriched environment exposure enhances social interactions and oxytocin responsiveness in male Long-Evans rats. Front Behav Neurosci 12:198. https://doi.org/10.3389/fnbeh.2018.00198
doi: 10.3389/fnbeh.2018.00198
pubmed: 30233335
pmcid: 6133956
Ornelas LC, Tyler RE, Irukulapati P, Paladugu S, Besheer J (2020) Increased alcohol self-administration following exposure to the predator odor TMT in active coping female rats. Behav Brain Res 402:113068. https://doi.org/10.1016/j.bbr.2020.113068
doi: 10.1016/j.bbr.2020.113068
pubmed: 33333108
Ramanathan KR, Jin J, Giustino TF, Payne MR, Maren S (2018a) Prefrontal projections to the thalamic nucleus reuniens mediate fear extinction. Nat Commun 9(1):4527. https://doi.org/10.1038/s41467-018-06970-z
doi: 10.1038/s41467-018-06970-z
pubmed: 30375397
pmcid: 6207683
Ramanathan KR, Maren S (2019) Nucleus reuniens mediates the extinction of contextual fear conditioning. Behav Brain Res 374:112114. https://doi.org/10.1016/j.bbr.2019.112114
doi: 10.1016/j.bbr.2019.112114
pubmed: 31351844
pmcid: 6833945
Ramanathan KR, Ressler RL, Jin J, Maren S (2018b) Nucleus reuniens is required for encoding and retrieving precise, hippocampal-dependent contextual fear memories in rats. J Neurosci 38(46):9925–9933. https://doi.org/10.1523/JNEUROSCI.1429-18.2018
doi: 10.1523/JNEUROSCI.1429-18.2018
pubmed: 30282726
pmcid: 6234294
Randall PA, Lovelock DF, VanVoorhies K, Agan VE, Kash TL, Besheer J (2021) Low-dose alcohol: Interoceptive and molecular effects and the role of dentate gyrus in rats. Addict Biol 26(3):e12965. https://doi.org/10.1111/adb.12965
doi: 10.1111/adb.12965
pubmed: 33015936
Riittinen ML, Lindroos F, Kimanen A, Pieninkeroinen E, Pieninkeroinen I, Sippola J, Veilahti J, Bergstrom M, Johansson G (1986) Impoverished rearing conditions increase stress-induced irritability in mice. Dev Psychobiol 19(2):105–111. https://doi.org/10.1002/dev.420190203
doi: 10.1002/dev.420190203
pubmed: 3699254
Rosen JB, Asok A, Chakraborty T (2015) The smell of fear: innate threat of 2,5-dihydro-2,4,5-trimethylthiazoline, a single molecule component of a predator odor. Front Neurosci 9:292. https://doi.org/10.3389/fnins.2015.00292
doi: 10.3389/fnins.2015.00292
pubmed: 26379483
pmcid: 4548190
Schwendt M, Shallcross J, Hadad NA, Namba MD, Hiller H, Wu L, Krause EG, Knackstedt LA (2018) A novel rat model of comorbid PTSD and addiction reveals intersections between stress susceptibility and enhanced cocaine seeking with a role for mGlu5 receptors. Transl Psychiatry 8(1):209. https://doi.org/10.1038/s41398-018-0265-9
doi: 10.1038/s41398-018-0265-9
pubmed: 30291225
pmcid: 6173705
Shallcross J, Hamor P, Bechard AR, Romano M, Knackstedt L, Schwendt M (2019) The divergent effects of CDPPB and cannabidiol on fear extinction and anxiety in a predator scent stress model of PTSD in rats. Front Behav Neurosci 13:91. https://doi.org/10.3389/fnbeh.2019.00091
doi: 10.3389/fnbeh.2019.00091
pubmed: 31133832
pmcid: 6523014
Silva BA, Burns AM, Graff J (2019) A cFos activation map of remote fear memory attenuation. Psychopharmacology 236(1):369–381. https://doi.org/10.1007/s00213-018-5000-y
doi: 10.1007/s00213-018-5000-y
pubmed: 30116860
Tyler RE, Weinberg BZS, Lovelock DF, Ornelas LC, Besheer J (2020) Exposure to the predator odor TMT induces early and late differential gene expression related to stress and excitatory synaptic function throughout the brain in male rats. Genes Brain Behav 19(8):e12684. https://doi.org/10.1111/gbb.12684
doi: 10.1111/gbb.12684
pubmed: 32666635
pmcid: 7655719
Weera MM, Schreiber AL, Avegno EM, Gilpin NW (2020) The role of central amygdala corticotropin-releasing factor in predator odor stress-induced avoidance behavior and escalated alcohol drinking in rats. Neuropharmacology 166:107979. https://doi.org/10.1016/j.neuropharm.2020.107979
doi: 10.1016/j.neuropharm.2020.107979
pubmed: 32028150
pmcid: 7442223
Xu W, Sudhof TC (2013) A neural circuit for memory specificity and generalization. Science 339(6125):1290–1295. https://doi.org/10.1126/science.1229534
doi: 10.1126/science.1229534
pubmed: 23493706
pmcid: 3651700
Yehuda R (2004) Risk and resilience in posttraumatic stress disorder. J Clin Psychiatry 65(Suppl 1):29–36
pubmed: 14728094