Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study.
Brain interstitial fluid dynamics
DTI-ALPS
Diffusion image
Glymphatic system
Reproducibility
Journal
Japanese journal of radiology
ISSN: 1867-108X
Titre abrégé: Jpn J Radiol
Pays: Japan
ID NLM: 101490689
Informations de publication
Date de publication:
Feb 2022
Feb 2022
Historique:
received:
12
06
2021
accepted:
29
07
2021
pubmed:
15
8
2021
medline:
3
2
2022
entrez:
14
8
2021
Statut:
ppublish
Résumé
The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was developed to evaluate the brain's glymphatic function or interstitial fluid dynamics. This study aimed to evaluate the reproducibility of the DTI-ALPS method and the effect of modifications in the imaging method and data evaluation. Seven healthy volunteers were enrolled in this study. Image acquisition was performed for this test-retest study using a fixed imaging sequence and modified imaging methods which included the placement of region of interest (ROI), imaging plane, head position, averaging, number of motion-proving gradients, echo time (TE), and a different scanner. The ALPS-index values were evaluated for the change of conditions listed above. This test-retest study by a fixed imaging sequence showed very high reproducibility (intraclass coefficient = 0.828) for the ALPS-index value. The bilateral ROI placement showed higher reproducibility. The number of averaging and the difference of the scanner did not influence the ALPS-index values. However, modification of the imaging plane and head position impaired reproducibility, and the number of motion-proving gradients affected the ALPS-index value. The ALPS-index values from 12-axis DTI and 3-axis diffusion-weighted image (DWI) showed good correlation (r = 0.86). Also, a shorter TE resulted in a larger value of the ALPS-index. ALPS index was robust under the fixed imaging method even when different scanners were used. ALPS index was influenced by the imaging plane, the number of motion-proving gradient axes, and TE in the imaging sequence. These factors should be uniformed in the planning ALPS method studies. The possibility to develop a 3-axis DWI-ALPS method using three axes of the motion-proving gradient was also suggested.
Identifiants
pubmed: 34390452
doi: 10.1007/s11604-021-01187-5
pii: 10.1007/s11604-021-01187-5
pmc: PMC8803717
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
147-158Subventions
Organisme : kakenhi
ID : 21K07563
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s).
Références
J Psychiatr Res. 2011 Aug;45(8):1095-100
pubmed: 21315376
AJNR Am J Neuroradiol. 2005 Apr;26(4):797-803
pubmed: 15814923
Sci Transl Med. 2012 Aug 15;4(147):147ra111
pubmed: 22896675
Magn Reson Med Sci. 2018 Apr 10;17(2):111-119
pubmed: 29367513
Magn Reson Med Sci. 2019 Jul 16;18(3):194-199
pubmed: 30416181
Invest Radiol. 2018 Sep;53(9):529-534
pubmed: 29652699
Psychogeriatrics. 2010 Mar;10(1):15-20
pubmed: 20594282
Magn Reson Med Sci. 2021 Sep 1;20(3):245-252
pubmed: 32669512
AJNR Am J Neuroradiol. 2009 Oct;30(9):1700-3
pubmed: 19541775
Eur Radiol. 2019 May;29(5):2243-2245
pubmed: 30488105
Oxid Med Cell Longev. 2021 Feb 16;2021:4034509
pubmed: 33680283
Neuroimage. 2012 Apr 2;60(2):1127-38
pubmed: 22227883
J Magn Reson Imaging. 2006 Nov;24(5):1005-10
pubmed: 17031835
Magn Reson Med Sci. 2020 Dec 1;19(4):375-381
pubmed: 32023561
Parkinsonism Relat Disord. 2021 Jan;82:56-60
pubmed: 33248394
Neuroimage. 2007 Aug 15;37(2):387-93
pubmed: 17583535
J Magn Reson Imaging. 2009 May;29(5):1199-205
pubmed: 19388113
Clin Neuroradiol. 2016 Dec;26(4):423-430
pubmed: 25791203
Neuroimage. 2021 Sep;238:118257
pubmed: 34118396
Curr Gerontol Geriatr Res. 2019 Jun 20;2019:5675014
pubmed: 31320896
Magn Reson Med. 2004 Apr;51(4):807-15
pubmed: 15065255
J Magn Reson Imaging. 2020 Jan;51(1):11-24
pubmed: 31423710
Acta Radiol Open. 2015 Nov 17;4(11):2058460115609635
pubmed: 26634147
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Magn Reson Med Sci. 2020 Nov 27;:
pubmed: 33250472
BMC Med Imaging. 2012 Oct 11;12:30
pubmed: 23057584
Front Hum Neurosci. 2020 Aug 13;14:300
pubmed: 32922272
J Neuroimaging. 2021 May;31(3):569-578
pubmed: 33556226
J Clin Invest. 2013 Mar;123(3):1299-309
pubmed: 23434588
Jpn J Radiol. 2017 Apr;35(4):172-178
pubmed: 28197821
Front Aging Neurosci. 2020 Dec 21;12:559603
pubmed: 33408625
Radiographics. 2017 Jan-Feb;37(1):281-297
pubmed: 28076020
NMR Biomed. 2015 Apr;28(4):468-85
pubmed: 25802212
Radiology. 2016 Nov;281(2):527-535
pubmed: 27243267
AJNR Am J Neuroradiol. 2006 May;27(5):1040-5
pubmed: 16687540
AJNR Am J Neuroradiol. 2008 Aug;29(7):1329-34
pubmed: 18451088
Stroke. 2014 Oct;45(10):3092-6
pubmed: 25190438
Springerplus. 2016 Jul 08;5(1):1023
pubmed: 27441142
Jpn J Radiol. 2018 Jul;36(7):415-420
pubmed: 29700795
Magn Reson Med. 2018 Mar;79(3):1650-1660
pubmed: 28656631
Neuroradiology. 1997 Jun;39(6):418-22; discussion 422
pubmed: 9225321
J Magn Reson Imaging. 2007 Sep;26(3):756-67
pubmed: 17729339
Korean J Radiol. 2020 Nov;21(11):1199-1209
pubmed: 32783417
Neuroradiology. 2021 Aug;63(8):1263-1270
pubmed: 33533947
Biometrics. 1977 Mar;33(1):159-74
pubmed: 843571
Nat Methods. 2012 Jul;9(7):671-5
pubmed: 22930834
Jpn J Radiol. 2021 Jan;39(1):1-14
pubmed: 32653987
Neuroimage. 2007 Jul 15;36(4):1123-38
pubmed: 17532649
Invest Radiol. 2017 Apr;52(4):195-197
pubmed: 27755154
PLoS One. 2018 Oct 4;13(10):e0205276
pubmed: 30286191
Magn Reson Med Sci. 2021 Mar 1;20(1):91-98
pubmed: 32295977
Neuroradiology. 2008 Feb;50(2):131-6
pubmed: 17938897