[Metabolic pathways controlled by E3 ligases: an opportunity for therapeutic targeting].

Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique.
E3 ligases cancers développements thérapeutiques inhibiteurs inhibitors ligases E3 système ubiquitine-protéasome therapeutic developments ubiquitin proteasome system

Journal

Biologie aujourd'hui
ISSN: 2105-0686
Titre abrégé: Biol Aujourdhui
Pays: France
ID NLM: 101544020

Informations de publication

Date de publication:
2021
Historique:
received: 04 06 2021
entrez: 16 8 2021
pubmed: 17 8 2021
medline: 26 10 2021
Statut: ppublish

Résumé

Since its discovery, the Ubiquitin Proteasome System (UPS) has been recognized for its major role in controlling most of the cell's metabolic pathways. In addition to its essential role in the degradation of proteins, it is also involved in the addressing, signaling or repair of DNA, which makes it a key player in cellular homeostasis. Although other control systems exist in the cell, the UPS is often referred to as the conductor. In view of its importance, any dysregulation of the UPS leads to more or less severe disorders for the cell and therefore the body, which accounts for UPS implication in many pathologies (cancer, Alzheimer's disease, Huntington's disease, etc.). UPS is made up of more than 1000 different proteins, the combinations of which allow the fine targeting of virtually all proteins in the body. UPS uses an enzymatic cascade (E1, 2 members; E2 > 35; E3 > 800) which allows the transfer of ubiquitin, a small protein of 8.5 kDa onto the protein to be targeted either for its degradation or to modify its activity. This ubiquitinylation signal is reversible and many deubiquitinylases (DUB, ∼ 80 isoforms) also have an important role. E3 enzymes are the most numerous and their function is to recognize the target protein, which makes them important players in the specific action of UPS. The very nature of E3 and the complexity of their interactions with different partners offer a very broad field of investigation and therefore significant potential for the development of therapeutic approaches. Without being exhaustive, this review illustrates the different strategies that have already been implemented to fight against different pathologies (excluding bacterial or viral infections). Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique. Depuis sa découverte, le Système Ubiquitine Protéasome (UPS) est reconnu pour son rôle majeur dans le contrôle de la plupart des voies métaboliques de la cellule. Outre son rôle primordial dans la dégradation des protéines, il intervient aussi dans l’adressage, la signalisation ou la réparation de l’ADN, ce qui en fait un acteur incontournable de l’homéostasie cellulaire. Bien que d’autres systèmes de contrôles existent dans la cellule, l’UPS est souvent considéré comme le chef d’orchestre. Au vu de son importance, toute dérégulation de l’UPS entraîne des désordres plus ou moins sévères pour la cellule et donc l’organisme. De fait, l’UPS est impliqué dans de nombreuses pathologies (cancer, maladie d’Alzheimer, de Huntington, etc.). L’UPS est composé de plus de 1000 protéines différentes dont les combinaisons permettent le ciblage fin de virtuellement toutes les protéines de l’organisme. L’UPS fait appel à une cascade enzymatique (E1, 2 isoformes ; E2 > 35 isoformes ; E3 > 800 isoformes) qui permet le transfert de l’ubiquitine, une petite protéine de 8,5 kDa, sur la protéine à cibler soit pour sa dégradation, soit pour modifier son activité. Ce signal d’ubiquitinylation est réversible et de nombreuses déubiquitinylases (DUB, ∼ 80 isoformes) jouent aussi un rôle important. Les enzymes E3 sont les plus nombreuses et leur fonction est de reconnaître la protéine cible, ce qui en fait des acteurs importants dans la spécificité d’action de l’UPS. La nature même des E3 et la complexité de leurs interactions avec différents partenaires offrent un champ d’investigation très large et donc des potentialités importantes pour le développement d’approches thérapeutiques. Sans être exhaustive, cette revue illustre les différentes stratégies ayant déjà été mises en œuvre pour lutter contre différentes pathologies (à l’exclusion des infections bactériennes ou virales).

Autres résumés

Type: Publisher (fre)
Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique.

Identifiants

pubmed: 34397374
doi: 10.1051/jbio/2021006
pii: jbio210006
doi:

Substances chimiques

Ubiquitin 0
Ubiquitin-Protein Ligases EC 2.3.2.27
Proteasome Endopeptidase Complex EC 3.4.25.1

Types de publication

Journal Article Review

Langues

fre

Sous-ensembles de citation

IM

Pagination

45-57

Informations de copyright

© Société de Biologie, 2021.

Références

Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., Dave, S., Hurt, E.M., Tan, B., Zhao, H., Stephens, O., Santra, M., Williams, D.R., Dang, L., Barlogie, B., Shaughnessy, J.D. Jr, Kuehl, W.M., Staudt, L.M. (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell, 12, 115-130.
Babu, J.R., Geetha, T., Wooten, M.W. (2005). Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J Neurochem, 94, 192-203.
Balaji, V., Hoppe, T. (2020). Regulation of E3 ubiquitin ligases by homotypic and heterotypic assembly. F1000Res, 9.
Bang, S., Kaur, S., Kurokawa, M. (2019). Regulation of the p53 family proteins by the ubiquitin proteasomal pathway. Int J Mol Sci, 21, https://doi.org/10.3390/ijms21010261.
Bard, J.A.M., Goodall, E.A., Greene, E.R., Jonsson, E., Dong, K.C., Martin, A. (2018). Structure and function of the 26S proteasome. Annu Rev Biochem, 87, 697-724.
Bencivenga, D., Caldarelli, I., Stampone, E., Mancini, F.P., Balestrieri, M.L., Della Ragione, F., Borriello, A. (2017). p27(Kip1) and human cancers: a reappraisal of a still enigmatic protein. Cancer Lett, 403, 354-365.
Boisson, B., Laplantine, E., Prando, C., Giliani, S., Israelsson, E., Xu, Z., Abhyankar, A., Israel, L., Trevejo-Nunez, G., Bogunovic, D., Cepika A.-M., MacDuff D., Chrabieh M., Hubeau M., Bajolle, F., Debré, M., Mazzolari, E., Vairo, D., Agou, F., Virgin, H.W., Bossuyt, X., Rambaud, C., Facchetti, F., Bonnet, D., Quartier, P., Fournet, J.-C., Pascual, V., Chaussabel, D., Notarangelo, L.D., Puel, A., Israël, A., Casanova, J.-L., Picard, C. (2012). Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol, 13, 1178-1186.
Bulatov, E., Ciulli, A. (2015). Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J, 467, 365-386.
Carabet, L.A., Rennie, P.S., Cherkasov, A. (2018). Therapeutic inhibition of Myc in cancer. Structural bases and computer-aided drug discovery approaches. Int J Mol Sci, 20, 120.
Cardote, T.A.F., Gadd, M.S., Ciulli, A. (2017). Crystal structure of the Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex. Structure, 25, 901-911, e903.
Ceccarelli, D.F., Tang, X., Pelletier, B., Orlicky, S., Xie, W., Plantevin, V., Neculai, D., Chou, Y.C., Ogunjimi, A., Al-Hakim, A., Varelas, X., Koszela, J., Wasney, G.A., Vedadi, M., Dhe-Paganon, S., Cox, S., Xu, S., Lopez-Girona, A., Mercurio, F., Wrana, J., Durocher, D., Meloche, S., Webb, D.R., Tyers, M., Sicheri, F. (2011). An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell, 145, 1075-1087.
Cengiz Seval, G., Beksac, M. (2018). The safety of bortezomib for the treatment of multiple myeloma. Expert Opin Drug Saf, 17, 953-962.
Clarke, B.A., Drujan, D., Willis, M.S., Murphy, L.O., Corpina, R.A., Burova, E., Rakhilin, S.V., Stitt, T.N., Patterson, C., Latres, E., Glass, D.J. (2007). The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab, 6, 376-385.
Cohen, P., Strickson, S. (2017). The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ, 24, 1153-1159.
Cohen, S., Zhai, B., Gygi, S.P., Goldberg, A.L. (2012). Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J Cell Biol, 198, 575-589.
Deshaies, R.J., Joazeiro, C.A. (2009). RING domain E3 ubiquitin ligases. Annu Rev Biochem, 78, 399-434.
DiBello, A., Datta, A.B., Zhang, X., Wolberger, C. (2016). Role of E2-RING interactions in governing RNF4-mediated substrate ubiquitination. J Mol Biol, 428, 4639-4650.
Doss-Pepe, E.W., Chen, L., Madura, K. (2005). Alpha-synuclein and parkin contribute to the assembly of ubiquitin lysine 63-linked multiubiquitin chains. J Biol Chem, 280, 16619-16624.
Dove, K.K., Klevit, R.E. (2017). RING-between-RING E3 ligases: emerging themes amid the variations. J Mol Biol, 429, 3363-3375.
Duffy, M.J., Synnott, N.C., O’Grady, S., Crown, J. (2020). Targeting p53 for the treatment of cancer. Semin Cancer Biol, S1044-579X(20)30160-7.
Einsele, H. (2014). Bortezomib. Recent results. Cancer Res, 201, 325–345.
Esposito, D., Koliopoulos, M.G., Rittinger, K. (2017). Structural determinants of TRIM protein function. Biochem Soc Trans, 45, 183-191.
Fabris, L., Berton, S., Pellizzari, I., Segatto, I., D’Andrea, S., Armenia, J., Bomben, R., Schiappacassi, M., Gattei, V., Philips, M.R., Vecchione, A., Belletti, B., Baldassarre, G. (2015). p27kip1 controls H-Ras/MAPK activation and cell cycle entry via modulation of MT stability. Proc Natl Acad Sci USA, 112, 13916-13921.
French, M.E., Klosowiak, J.L., Aslanian, A., Reed, S.I., Yates, J.R., 3rd, Hunter, T. (2017). Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J Biol Chem, 292, 10398-10413.
Fu, L., Cui, C.P., Zhang, X., Zhang, L. (2020). The functions and regulation of Smurfs in cancers. Semin Cancer Biol, 67, 102-116.
George, A.J., Hoffiz, Y.C., Charles, A.J., Zhu, Y., Mabb, A.M. (2018). A comprehensive atlas of E3 ubiquitin ligase mutations in neurological disorders. Front Genet, 9, 29.
Glickman, M.H., Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373-428.
Grasberger, B.L., Lu, T., Schubert, C., Parks, D.J., Carver, T.E., Koblish, H.K., Cummings, M.D., LaFrance, L.V., Milkiewicz, K.L., Calvo, R.R., Maguire, D., Lattanze, J., Franks, C.F., Zhao, S., Ramachandren, K., Bylebyl, G.R., Zhang, M., Manthey, C.L., Petrella, E.C., Pantoliano, M.W., Deckman, I.C., Spurlino, J.C., Maroney, A.C., Tomczuk, B.E., Molloy, C.J., Bone, R.F. (2005). Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem, 48, 909-912.
Han, Z., Lu, J., Liu, Y., Davis, B., Lee, M.S., Olson, M.A., Ruthel, G., Freedman, B.D., Schnell, M.J., Wrobel, J.E., Reitz, A.B., Harty, R.N. (2014). Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J Virol, 88, 7294-7306.
Harrigan, J.A., Jacq, X., Martin, N.M., Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov, 17, 57-78.
Hock, A.K., Vousden, K.H. (2014). The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta, 1843, 137-149.
Hou, H., Sun, D., Zhang, X. (2019). The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int, 19, 216.
Jain, A.K., Barton, M.C. (2010). Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther, 10, 665-672.
Kaiser, S.E., Riley, B.E., Shaler, T.A., Trevino, R.S., Becker, C.H., Schulman, H., Kopito, R.R. (2011). Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods, 8, 691-696.
Karbowski, M., Youle, R.J. (2011). Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr Opin Cell Biol, 23, 476-482.
Kedar, V., McDonough, H., Arya, R., Li, H.H., Rockman, H.A., Patterson, C. (2004). Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA, 101, 18135-18140.
Khatri, N., Man, H.Y. (2019). The autism and Angelman syndrome protein Ube3A/E6AP: the gene, E3 ligase ubiquitination targets and neurobiological functions. Front Mol Neurosci, 12, 109.
Kim, H.T., Goldberg, A.L. (2017). The deubiquitinating enzyme Usp14 allosterically inhibits multiple proteasomal activities and ubiquitin-independent proteolysis. J Biol Chem, 292, 9830-9839.
Kim, T., Bae, S.C., Kang, C. (2020). Synergistic activation of NF-kappaB by TNFAIP3 (A20) reduction and UBE2L3 (UBCH7) augment that synergistically elevate lupus risk. Arthritis Res Ther, 22, 93.
Knipscheer, P., Raschle, M., Smogorzewska, A., Enoiu, M., Ho, T.V., Scharer, O.D., Elledge, S.J., Walter, J.C. (2009). The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science, 326, 1698-1701.
Koliopoulos, M.G., Esposito, D., Christodoulou, E., Taylor, I.A., Rittinger, K. (2016). Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J, 35, 1204-1218.
Komander, D., Clague, M.J., Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol, 10, 550-563.
Konopleva, M., Martinelli, G., Daver, N., Papayannidis, C., Wei, A., Higgins, B., Ott, M., Mascarenhas, J., Andreeff, M. (2020). MDM2 inhibition: an important step forward in cancer therapy. Leukemia, 34, 2858-2874.
Kontaxi, C., Piccardo, P., Gill, A.C. (2017). Lysine-directed post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Front Mol Biosci, 4, 56.
Kumar, B., Lecompte, K.G., Klein, J.M., Haas, A.L. (2010). Ser(120) of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3{alpha}/Ubr1. J Biol Chem, 285, 41300-41309.
Kumar, D., Kumar, P. (2019). Integrated mechanism of lysine 351, PARK2, and STUB1 in AbetaPP ubiquitination. J Alzheimers Dis, 68, 1125-1150.
Kuo, C.L., Goldberg, A.L. (2017). Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc Natl Acad Sci USA, 114, E3404-E3413.
Lagirand-Cantaloube, J., Offner, N., Csibi, A., Leibovitch, M.P., Batonnet-Pichon, S., Tintignac, L.A., Segura, C.T., Leibovitch, S.A. (2008). The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J, 27, 1266-1276.
Lee, J.T., Gu, W. (2010). The multiple levels of regulation by p53 ubiquitination. Cell Death Differ, 17, 86-92.
Lee, S., Challa-Malladi, M., Bratton, S.B., Wright, C.W. (2014). Nuclear factor-kappaB-inducing kinase (NIK) contains an amino-terminal inhibitor of apoptosis (IAP)-binding motif (IBM) that potentiates NIK degradation by cellular IAP1 (c-IAP1). J Biol Chem, 289, 30680-30689.
Lehmann, A.R. (2003). DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie, 85, 1101-1111.
Lemos, A., Gomes, A.S., Loureiro, J.B., Brandao, P., Palmeira, A., Pinto, M.M.M., Saraiva, L., Sousa, M.E. (2019). Synthesis, biological evaluation, and in silico studies of novel aminated xanthones as potential p53-activating agents. Molecules, 24, 1975.
Li, H., Fang, Y., Niu, C., Cao, H., Mi, T., Zhu, H., Yuan, J., Zhu, J. (2018a). Inhibition of cIAP1 as a strategy for targeting c-MYC-driven oncogenic activity. Proc Natl Acad Sci USA, 115, E9317-E9324.
Li, X., Elmira, E., Rohondia, S., Wang, J., Liu, J., Dou, Q.P. (2018b). A patent review of the ubiquitin ligase system: 2015-2018. Expert Opin Ther Pat, 28, 919-937.
Malecka, K.A., Fera, D., Schultz, D.C., Hodawadekar, S., Reichman, M., Donover, P.S., Murphy, M.E., Marmorstein, R. (2014). Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem Biol, 9, 1603-1612.
Mattiroli, F., Vissers, J.H., van Dijk, W.J., Ikpa, P., Citterio, E., Vermeulen, W., Marteijn, J.A., Sixma, T.K. (2012). RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell, 150, 1182-1195.
Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Pugh, C.W., Maher, E.R., Ratcliffe, P.J. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271-275.
Metzger, M.B., Pruneda, J.N., Klevit, R.E., Weissman, A.M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta, 1843, 47-60.
Michelle, C., Vourc’h, P., Mignon, L., Andres, C.R. (2009). What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor ? J Mol Evol, 68, 616-628.
Montesinos, P., Beckermann, B.M., Catalani, O., Esteve, J., Gamel, K., Konopleva, M.Y., Martinelli, G., Monnet, A., Papayannidis, C., Park, A., Récher, C., Rodríguez-Veiga, R., Röllig, C., Vey, N., Wei, A.H., Yoon, S.-S., Fenaux, P. (2020). MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol, 16, 807-815.
Mund, T., Lewis, M.J., Maslen, S., Pelham, H.R. (2014). Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci USA, 111, 16736-16741.
Murayama, K., Kato-Murayama, M., Itoh, Y., Miyazono, K., Miyazawa, K., Shirouzu, M. (2020). Structural basis for inhibitory effects of Smad7 on TGF-beta family signaling. J Struct Biol, 212, 107661.
Nakasone, M.A., Livnat-Levanon, N., Glickman, M.H., Cohen, R.E., Fushman, D. (2013). Mixed-linkage ubiquitin chains send mixed messages. Structure, 21, 727-740.
Namuduri, A.V., Heras, G., Lauschke, V.M., Vitadello, M., Traini, L., Cacciani, N., Gorza, L., Gastaldello, S. (2020). Expression of SUMO enzymes is fiber type dependent in skeletal muscles and is dysregulated in muscle disuse. FASEB J, 34, 2269-2286.
Nie, M., Boddy, M.N. (2016). Cooperativity of the SUMO and ubiquitin pathways in genome stability. Biomolecules, 6, 14.
Offensperger, F., Muller, F., Jansen, J., Hammler, D., Gotz, K.H., Marx, A., Sirois, C.L., Chamberlain, S.J., Stengel, F., Scheffner, M. (2020). Identification of small-molecule activators of the ubiquitin ligase E6AP/UBE3A and Angelman syndrome-derived E6AP/UBE3A variants. Cell Chem Biol, 27, 1510-1520, e1516.
Olzmann, J.A., Chin, L.S. (2008). Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy, 4, 85-87.
Pancheri, E., Guglielmi, V., Wilczynski, G.M., Malatesta, M., Tonin, P., Tomelleri, G., Nowis, D., Vattemi, G. (2020). Non-hematologic toxicity of bortezomib in multiple myeloma: the neuromuscular and cardiovascular adverse effects. Cancers (Basel), 12, https://doi.org/10.3390/cancers12092540.
Pao, K.C., Wood, N.T., Knebel, A., Rafie, K., Stanley, M., Mabbitt, P.D., Sundaramoorthy, R., Hofmann, K., van Aalten, D.M.F., Virdee, S. (2018). Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity. Nature, 556, 381-385.
Park, C.W., Ryu, K.Y. (2014). Cellular ubiquitin pool dynamics and homeostasis. BMB Rep, 47, 475-482.
Peris-Moreno, D., Cussonneau, L., Combaret, L., Polge, C., Taillandier, D. (2021). Ubiquitin ligases at the heart of skeletal muscle atrophy control. Molecules, 26, 407.
Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W.H., Browne, S.E., Hall, A., Voellmy, R., Tsuboi, Y., Dawson, T.M., Wolozin, B., Hardy, J., Hutton, M. (2004). CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet, 13, 703-714.
Pines, J. (2011). Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol, 12, 427-438.
Polge, C., Attaix, D., Taillandier, D. (2015). Role of E2-Ub-conjugating enzymes during skeletal muscle atrophy. Front Physiol, 6, 59.
Polge, C., Heng, A.E., Jarzaguet, M., Ventadour, S., Claustre, A., Combaret, L., Bechet, D., Matondo, M., Uttenweiler-Joseph, S., Monsarrat, B., Attaix, D., Taillandier, D. (2011). Muscle actin is polyubiquitinylated in vitro and in vivo and targeted for breakdown by the E3 ligase MuRF1. FASEB J, 25, 3790-3802.
Polge, C., Uttenweiler-Joseph, S., Leulmi, R., Heng, A.E., Burlet-Schiltz, O., Attaix, D., Taillandier, D. (2013). Deciphering the ubiquitin proteome: limits and advantages of high throughput global affinity purification-mass spectrometry approaches. Int J Biochem Cell Biol, 45, 2136-2146.
Polge, C., Cabantous, S., Deval, C., Claustre, A., Hauvette, A., Bouchenot, C., Aniort, J., Bechet, D., Combaret, L., Attaix, D., Taillandier, D. (2018). A muscle-specific MuRF1-E2 network requires stabilization of MuRF1-E2 complexes by telethonin, a newly identified substrate. J Cachexia Sarcopenia Muscle, 9, 129-145.
Quartararo, A.J., Gates, Z.P., Somsen, B.A., Hartrampf, N., Ye, X., Shimada, A., Kajihara, Y., Ottmann, C., Pentelute, B.L. (2020). Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat Commun, 11, 3183.
Quirit, J.G., Lavrenov, S.N., Poindexter, K., Xu, J., Kyauk, C., Durkin, K.A., Aronchik, I., Tomasiak, T., Solomatin, Y.A., Preobrazhenskaya, M.N., Firestone, G.L. (2017). Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochem Pharmacol, 127, 13-27.
Rizk, J., Kaplinsky, J., Agerholm, R., Kadekar, D., Ivars, F., Agace, W.W., Wong, W.W., Szucs, M.J., Myers, S.A., Carr, S.A., Waisman, A., Bekiaris, V. (2019). SMAC mimetics promote NIK-dependent inhibition of CD4(+) TH17 cell differentiation. Sci Signal, 12, https://doi.org/10.1126/scisignal.aaw3469.
Rotin, D., Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 10, 398-409.
Rubio, I., Rodriguez-Navarro, J.A., Tomas-Zapico, C., Ruiz, C., Casarejos, M.J., Perucho, J., Gomez, A., Rodal, I., Lucas, J.J., Mena, M.A., García de Yébenes, J. (2009). Effects of partial suppression of parkin on huntingtin mutant R6/1 mice. Brain Res, 1281, 91-100.
Rui, L., Yuan, M., Frantz, D., Shoelson, S., White, M.F. (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem, 277, 42394-42398.
Sarcevic, B., Mawson, A., Baker, R.T., Sutherland, R.L. (2002). Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J, 21, 2009-2018.
Scott, K., Hayden, P.J., Will, A., Wheatley, K., Coyne, I. (2016). Bortezomib for the treatment of multiple myeloma. Cochrane Database Syst Rev, 4, CD010816.
Seth, B., Yadav, A., Agarwal, S., Tiwari, S.K., Chaturvedi, R.K. (2017). Inhibition of the transforming growth factor-beta/SMAD cascade mitigates the anti-neurogenic effects of the carbamate pesticide carbofuran. J Biol Chem, 292, 19423-19440.
Sharma, A., Alswillah, T., Singh, K., Chatterjee, P., Willard, B., Venere, M., Summers, M.K., Almasan, A. (2018). USP14 regulates DNA damage repair by targeting RNF168-dependent ubiquitination. Autophagy, 14, 1976-1990.
Skalniak, L., Surmiak, E., Holak, T.A. (2019). A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018). Expert Opin Ther Pat, 29, 151-170.
Sluimer, J., Distel, B. (2018). Regulating the human HECT E3 ligases. Cell Mol Life Sci, 75, 3121-3141.
Song, J.J., Szczepanski, M.J., Kim, S.Y., Kim, J.H., An, J.Y., Kwon, Y.T., Alcala, M.A. Jr., Bartlett, D.L., Lee, Y.J. (2010). c-Cbl-mediated degradation of TRAIL receptors is responsible for the development of the early phase of TRAIL resistance. Cell Signal, 22, 553-563.
Song, R., Peng, W., Zhang, Y., Lv, F., Wu, H.K., Guo, J., Cao, Y., Pi, Y., Zhang, X., Jin, L., Zhang, M, Jiang, P, Liu, F, Meng, S, Zhang, X, Jiang, P, Cao, CM, Xiao, RP. (2013). Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature, 494, 375-379.
Soss, S.E., Klevit, R.E., Chazin, W.J. (2013). Activation of UbcH5c∼Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B. Biochemistry, 52, 2991-2999.
Spratt, D.E., Martinez-Torres, R.J., Noh, Y.J., Mercier, P., Manczyk, N., Barber, K.R., Aguirre, J.D., Burchell, L., Purkiss, A., Walden, H., Shaw, G.S. (2013). A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease. Nat Commun, 4, 1983. https://doi.org/10.1038/ncomms2983.
Sugeno, N., Hasegawa, T., Tanaka, N., Fukuda, M., Wakabayashi, K., Oshima, R., Konno, M., Miura, E., Kikuchi, A., Baba, T., Anan, T., Nakao, M., Geisler, S., Aoki, M., Takeda, A. (2014). Lys-63-linked ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized alpha-synuclein. J Biol Chem, 289, 18137-18151.
Taillandier, D., Polge, C. (2019). Skeletal muscle atrogenes: From rodent models to human pathologies. Biochimie, 166, 251-269.
Takedachi, A., Saijo, M., Tanaka, K. (2010). DDB2 complex-mediated ubiquitylation around DNA damage is oppositely regulated by XPC and Ku and contributes to the recruitment of XPA. Mol Cell Biol, 30, 2708-2723.
Tan, W., van Twest, S., Leis, A., Bythell-Douglas, R., Murphy, V.J., Sharp, M., Parker, M.W., Crismani, W., Deans, A.J. (2020). Monoubiquitination by the human Fanconi anemia core complex clamps FANCI:FANCD2 on DNA in filamentous arrays. Elife, 9, https://doi.org/10.7554/eLife.54128.
Tian, M., Zeng, T., Liu, M., Han, S., Lin, H., Lin, Q., Li, L., Jiang, T., Li, G., Lin, H., Jiang, T., Li, G., Lin, H., Zhang, T., Kang, Q., Deng, X., Wang, H.-R. (2019). A cell-based high-throughput screening method based on a ubiquitin-reference technique for identifying modulators of E3 ligases. J Biol Chem, 294, 2880-2891.
Tintignac, L.A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M.P., Leibovitch, S.A. (2005). Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem, 280, 2847-2856.
Tomko, R.J. Jr., Hochstrasser, M. (2013). Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem, 82, 415-445.
Trotman, L.C., Wang, X., Alimonti, A., Chen, Z., Teruya-Feldstein, J., Yang, H., Pavletich, N.P., Carver, B.S., Cordon-Cardo, C., Erdjument-Bromage, H., Tempst, P, Chi, SG, Kim, HJ, Misteli, T, Jiang, X, Pandolfi, PP. (2007). Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell, 128, 141-156.
van Wijk, S.J., Timmers, H.T. (2010). The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J, 24, 981-993.
Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., Liu, E.A. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303, 844-848.
Velasco, R., Alberti, P., Bruna, J., Psimaras, D., Argyriou, A.A. (2019). Bortezomib and other proteosome inhibitors-induced peripheral neurotoxicity: From pathogenesis to treatment. J Peripher Nerv Syst, 24(Suppl 2), S52-S62.
Wade, M., Li, Y.C., Wahl, G.M. (2013). MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer, 13, 83-96.
Wagner, S.A., Beli, P., Weinert, B.T., Nielsen, M.L., Cox, J., Mann, M., Choudhary, C. (2011). A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics, 10, M111 013284.
Walsh, M.C., Kim, G.K., Maurizio, P.L., Molnar, E.E., Choi, Y. (2008). TRAF6 autoubiquitinylation-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One, 3, e4064.
Wang, B., Merillat, S.A., Vincent, M., Huber, A.K., Basrur, V., Mangelberger, D., Zeng, L., Elenitoba-Johnson, K., Miller, R.A., Irani, D.N., Andrzej A., Dlugosz, A.A., Schnell, S., Scaglione, K.M., Paulson, H.L. (2016). Loss of the ubiquitin-conjugating enzyme UBE2W results in susceptibility to early postnatal lethality and defects in skin, immune, and male reproductive systems. J Biol Chem, 291, 3030-3042.
Wang, M., Guo, L., Wu, Q., Zeng, T., Lin, Q., Qiao, Y., Wang, Q., Liu, M., Zhang, X., Ren, L, Zhang, S., Pei, Y., Yin, Z., Ding, F., Wang, H.R. (2014). ATR/Chk1/Smurf1 pathway determines cell fate after DNA damage by controlling RhoB abundance. Nat Commun, 5, 4901.
Wang, S., Adrianto, I., Wiley, G.B., Lessard, C.J., Kelly, J.A., Adler, A.J., Glenn, S.B., Williams, A.H., Ziegler, J.T., Comeau, M.E., Marion, M.C. Wakeland, B.E., Liang, C., Kaufman, K.M., Guthridge, J.M., Alarcón-Riquelme, M.E., BIOLUPUS and GENLES Networks ; Alarcón, G.S., Anaya, J.-M., Bae, S.-C., Kim, J.-H., Joo, Y.B., Boackle, S.A., Brown, E.E., Petri, M.A., Ramsey-Goldman, R., Reveille, J.D., Vilá, L.M., Criswell, L.A., Edberg, J.C., Freedman, B.I., Gilkeson, G.S., Jacob, C.O., James, J.A., Kamen, D.L., Kimberly, R.P., Martin, J., Merrill, J.T., Niewold, T.B., Pons-Estel, B.A., Scofield, R.H., Stevens, A.M., Tsao, B.P., Vyse, T.J., Langefeld, C.D., Harley, J.B., Wakeland, E.K., Moser, K.L., Montgomery, C.G., Gaffney, P.M. (2012). A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun, 13, 380-387.
Wang, S., Zhao, Y., Aguilar, A., Bernard, D., Yang, C.Y. (2017). Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges. Cold Spring Harb Perspect Med, 7(5): a026245.
Wang, Y., Argiles-Castillo, D., Kane, E.I., Zhou, A., Spratt, D.E. (2020). HECT E3 ubiquitin ligases – Emerging insights into their biological roles and disease relevance. J Cell Sci, 133, https://doi.org/10.1242/jcs.228072.
Watt, J.E., Hughes, G.R., Walpole, S., Monaco, S., Stephenson, G.R., Bulman Page, P.C., Hemmings, A.M., Angulo, J., Chantry, A. (2018). Discovery of small molecule WWP2 ubiquitin ligase inhibitors. Chemistry, 24, 17677-17680.
Weber, J., Polo, S., Maspero, E. (2019). HECT E3 ligases: a tale with multiple facets. Front Physiol, 10, 370.
Wenzel, D.M., Stoll, K.E., Klevit, R.E. (2011). E2s: structurally economical and functionally replete. Biochem J, 433, 31-42.
Witt, A., Vucic, D. (2017). Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Differ, 24, 1160-1171.
Wu, K., Chong, R.A., Yu, Q., Bai, J., Spratt, D.E., Ching, K., Lee, C., Miao, H., Tappin, I., Hurwitz, J., Zheng, N., Shaw, G.S., Sun, Y., Felsenfeld, D.P., Sanchez, R., Jun-Zheng, N., Pan, Z.-Q. (2016). Suramin inhibits cullin-RING E3 ubiquitin ligases. Proc Natl Acad Sci USA, 113, E2011-2018.
Wu, W., Koike, A., Takeshita, T., Ohta, T. (2008). The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div, 3, 1.
Xia, Y., Pao, G.M., Chen, H.W., Verma, I.M., Hunter, T. (2003). Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J Biol Chem, 278, 5255-5263.
Yang, W.L., Zhang, X., Lin, H.K. (2010). Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene, 29, 4493-4503.
Zhang, X., Linder, S., Bazzaro, M. (2020a). Drug development targeting the ubiquitin-proteasome system (UPS) for the treatment of human cancers. Cancers (Basel), 12, 902.
Zhang, X., Shi, S., Su, Y., Yang, X., He, S., Yang, X., Wu, J., Zhang, J., Rao, F. (2020b). Suramin and NF449 are IP5K inhibitors that disrupt inositol hexakisphosphate-mediated regulation of cullin-RING ligase and sensitize cancer cells to MLN4924/pevonedistat. J Biol Chem, 295, 10281-10292.
Zheng, N., Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem, 86, 129-157.
Zhu, X., Li, T., Niu, X., Chen, L., Ge, C. (2020). Identification of UBE2T as an independent prognostic biomarker for gallbladder cancer. Oncol Lett, 20, 44.
Zinngrebe, J., Montinaro, A., Peltzer, N., Walczak, H. (2014). Ubiquitin in the immune system. EMBO Rep, 15, 28-45.
Zucchelli, S., Marcuzzi, F., Codrich, M., Agostoni, E., Vilotti, S., Biagioli, M., Pinto, M., Carnemolla, A., Santoro, C., Gustincich, S., Persichetti, F. (2011). Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation. J Biol Chem, 286, 25108-25117.
Zuo, C., Sheng, X., Ma, M., Xia, M., Ouyang, L. (2016). ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system. Oncotarget, 7, 74393-74409.

Auteurs

Daniel Taillandier (D)

Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, 63000 Clermont-Ferrand, France.

Articles similaires

Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation
Porphyromonas gingivalis MicroRNAs Humans Periodontitis Adhesins, Bacterial
Autophagy Humans Neoplasms Ubiquitination Animals

Classifications MeSH