Diffusion of Lipid Nanovesicles Bound to a Lipid Membrane Is Associated with the Partial-Slip Boundary Condition.
Multivalent interactions
confined diffusion
lipid vesicles
single-particle tracking
slip length
Journal
Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070
Informations de publication
Date de publication:
13 10 2021
13 10 2021
Historique:
pubmed:
18
8
2021
medline:
15
10
2021
entrez:
17
8
2021
Statut:
ppublish
Résumé
During diffusion of nanoparticles bound to a cellular membrane by ligand-receptor pairs, the distance to the laterally mobile interface is sufficiently short for their motion to depend not only on the membrane-mediated diffusivity of the tethers but also in a not yet fully understood manner on nanoparticle size and interfacial hydrodynamics. By quantifying diffusivity, velocity, and size of individual membrane-bound liposomes subjected to a hydrodynamic shear flow, we have successfully separated the diffusivity contributions from particle size and number of tethers. The obtained diffusion-size relations for synthetic and extracellular lipid vesicles are not well-described by the conventional no-slip boundary condition, suggesting partial slip as well as a significant diffusivity dependence on the distance to the lipid bilayer. These insights, extending the understanding of diffusion of biological nanoparticles at lipid bilayers, are of relevance for processes such as cellular uptake of viruses and lipid nanoparticles or labeling of cell-membrane-residing molecules.
Identifiants
pubmed: 34403260
doi: 10.1021/acs.nanolett.1c02092
pmc: PMC8517973
doi:
Substances chimiques
Lipid Bilayers
0
Liposomes
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8503-8509Références
Nano Lett. 2019 Mar 13;19(3):1875-1882
pubmed: 30719917
ACS Nano. 2019 Oct 22;13(10):10860-10868
pubmed: 31589406
Biophys J. 1999 Jan;76(1 Pt 1):314-22
pubmed: 9876143
J Biol Phys. 2020 Jun;46(2):169-176
pubmed: 32335764
Nano Lett. 2021 Jun 23;21(12):4959-4965
pubmed: 34110825
Nano Lett. 2016 Jul 13;16(7):4382-90
pubmed: 27241273
J Am Chem Soc. 2003 Apr 2;125(13):3696-7
pubmed: 12656589
Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111-3
pubmed: 1059096
Mol Biosyst. 2016 Apr;12(4):1071-81
pubmed: 26888195
ACS Appl Mater Interfaces. 2015 Apr 15;7(14):7505-15
pubmed: 25812004
Soft Matter. 2016 Aug 14;12(30):6331-46
pubmed: 27396746
ACS Infect Dis. 2018 Jun 8;4(6):944-953
pubmed: 29688001
J Nanobiotechnology. 2018 Sep 19;16(1):71
pubmed: 30231877
Langmuir. 2020 Aug 25;36(33):9693-9700
pubmed: 32787069
J Colloid Interface Sci. 1999 Mar 15;211(2):243-251
pubmed: 10049541
Viruses. 2015 Jun 02;7(6):2794-815
pubmed: 26043381
Phys Rev Lett. 2008 Nov 28;101(22):226101
pubmed: 19113490
J Phys D Appl Phys. 2018 Jun 13;51(23):235401
pubmed: 29853718
Nat Commun. 2016 Sep 23;7:12956
pubmed: 27658367
ACS Nano. 2019 Oct 22;13(10):10918-10928
pubmed: 31259529
ACS Nano. 2015 Sep 22;9(9):8655-71
pubmed: 26256227
Phys Chem Chem Phys. 2020 Apr 28;22(16):8781-8790
pubmed: 32285050