Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
20 09 2021
Historique:
accepted: 08 08 2021
revised: 01 08 2021
received: 27 06 2020
pubmed: 18 8 2021
medline: 9 11 2021
entrez: 17 8 2021
Statut: ppublish

Résumé

Rolling circle amplification (RCA) is a powerful tool for the construction of DNA nanomaterials such as hydrogels, high-performance scaffolds and DNA nanoflowers (DNFs), hybrid materials formed of DNA and magnesium pyrophosphate. Such DNA nanomaterials have great potential in therapeutics, imaging, protein immobilisation, and drug delivery, yet limited chemistry is available to expand their functionality. Here, we present orthogonal strategies to produce densely modified RCA products and DNFs. We provide methods to selectively modify the DNA component and/or the protein cargo of these materials, thereby greatly expanding the range of chemical functionalities available to these systems. We have used our methodology to construct DNFs bearing multiple surface aptamers and peptides capable of binding to cancer cells that overexpress the HER2 oncobiomarker, demonstrating their potential for diagnostic and therapeutic applications.

Identifiants

pubmed: 34403467
pii: 6353807
doi: 10.1093/nar/gkab720
pmc: PMC8450075
doi:

Substances chimiques

Aptamers, Peptide 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9042-9052

Subventions

Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/J001694/2
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/ R008655/1
Pays : United Kingdom

Informations de copyright

© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Eur J Med Chem. 2013 Mar;61:116-21
pubmed: 23107515
Nat Mater. 2012 Feb 26;11(4):316-22
pubmed: 22367004
ACS Nano. 2014 Oct 28;8(10):9767-80
pubmed: 25198246
Chem Soc Rev. 2014 May 21;43(10):3324-41
pubmed: 24643375
Science. 2017 Dec 15;358(6369):
pubmed: 29242318
Nat Protoc. 2015 Oct;10(10):1508-24
pubmed: 26357007
Molecules. 2018 Jul 23;23(7):
pubmed: 30041480
Adv Mater. 2017 Jul;29(26):
pubmed: 28474844
Nucleic Acids Res. 2018 Sep 6;46(15):7495-7505
pubmed: 30010979
Nat Rev Drug Discov. 2020 Oct;19(10):673-694
pubmed: 32782413
FASEB J. 2003 Feb;17(2):256-8
pubmed: 12490548
Nature. 1998 Aug 6;394(6693):539-44
pubmed: 9707114
J Am Chem Soc. 2013 Nov 6;135(44):16438-45
pubmed: 24164620
J Org Chem. 2002 May 3;67(9):3057-64
pubmed: 11975567
ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24069-74
pubmed: 26440045
Curr Opin Chem Biol. 2018 Oct;46:63-70
pubmed: 29751162
Chem Sci. 2018 Aug 24;9(42):8110-8120
pubmed: 30542561
ACS Nano. 2015 Oct 27;9(10):9859-67
pubmed: 26335372
Angew Chem Int Ed Engl. 2005 Jun 6;44(23):3582-5
pubmed: 15880749
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8170-5
pubmed: 23630281
Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5821-6
pubmed: 24753303
Nanomedicine (Lond). 2016 Mar;11(6):673-92
pubmed: 27003448
Nucleosides Nucleotides Nucleic Acids. 2015;34(2):92-102
pubmed: 25621703
J Am Chem Soc. 2013 Feb 27;135(8):2959-62
pubmed: 23414516
Angew Chem Int Ed Engl. 2002 Jul 15;41(14):2596-9
pubmed: 12203546
Analyst. 2015 Apr 21;140(8):2671-8
pubmed: 25734317
Nature. 2006 Mar 16;440(7082):297-302
pubmed: 16541064
Analyst. 2013 Jun 7;138(11):3121-5
pubmed: 23591274
Biomater Sci. 2016 Aug 16;4(9):1314-7
pubmed: 27464359
Nanoscale. 2017 Sep 28;9(37):14094-14102
pubmed: 28901371
Anal Biochem. 2005 Dec 1;347(1):152-5
pubmed: 16243289
Theranostics. 2019 May 18;9(11):3191-3212
pubmed: 31244949
Nature. 2012 May 30;485(7400):623-6
pubmed: 22660323
Nucleic Acids Res. 2016 May 5;44(8):e79
pubmed: 26819406
Angew Chem Int Ed Engl. 2010 Dec 3;49(49):9422-5
pubmed: 20857472
Chem Sci. 2017 Oct 1;8(10):7098-7105
pubmed: 29147539
Small. 2014 Apr 24;10(8):1623-33
pubmed: 24851252
Int J Nanomedicine. 2018 Jan 25;13:537-553
pubmed: 29416334
Chembiochem. 2014 Apr 14;15(6):789-93
pubmed: 24644275

Auteurs

Ysobel R Baker (YR)

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.

Liyiwen Yuan (L)

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.

Jinfeng Chen (J)

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.

Roman Belle (R)

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.

Robert Carlisle (R)

Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.

Afaf H El-Sagheer (AH)

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.
Chemistry Branch Department of Science and Mathematics, Suez University, Suez 43721, Egypt.

Tom Brown (T)

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH