Modulating the bicoid gradient in space and time.


Journal

Hereditas
ISSN: 1601-5223
Titre abrégé: Hereditas
Pays: England
ID NLM: 0374654

Informations de publication

Date de publication:
17 Aug 2021
Historique:
received: 28 05 2021
accepted: 19 07 2021
entrez: 18 8 2021
pubmed: 19 8 2021
medline: 24 12 2021
Statut: epublish

Résumé

The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15 Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.

Sections du résumé

BACKGROUND BACKGROUND
The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model.
RESULTS RESULTS
We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15
CONCLUSIONS CONCLUSIONS
Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.

Identifiants

pubmed: 34404481
doi: 10.1186/s41065-021-00192-y
pii: 10.1186/s41065-021-00192-y
pmc: PMC8371787
doi:

Substances chimiques

CycB protein, Drosophila 0
Cyclin B 0
Drosophila Proteins 0
Homeodomain Proteins 0
RNA, Messenger 0
Trans-Activators 0
bcd protein, Drosophila 0
Poly A 24937-83-5
Polynucleotide Adenylyltransferase EC 2.7.7.19
wisp protein, Drosophila EC 2.7.7.19

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

29

Subventions

Organisme : Nilsson-Ehle Stiftelse
ID : 2019
Organisme : Vetenskapsrådet
ID : 2010
Organisme : Pia Ståhl Stiftelse
ID : 2019
Organisme : Erik-Philip-Sörensen-Stiftelse
ID : 2019

Informations de copyright

© 2021. The Author(s).

Références

Cell. 1988 Jul 1;54(1):95-104
pubmed: 3383245
Nucleic Acids Res. 2021 Jan 8;49(D1):D899-D907
pubmed: 33219682
Development. 2019 Aug 9;146(15):
pubmed: 31391195
Science. 1991 Nov 29;254(5036):1385-7
pubmed: 1683715
Curr Biol. 2014 Oct 6;24(19):2281-7
pubmed: 25242033
Phys Biol. 2012 Oct;9(5):055004
pubmed: 23011646
J Biol Chem. 2004 Feb 6;279(6):4560-9
pubmed: 14607826
Cells. 2021 Jan 08;10(1):
pubmed: 33435549
Development. 1999 Dec;126(23):5505-13
pubmed: 10556074
Hereditas. 2018 Sep 11;155:28
pubmed: 30220899
J Cell Biol. 1984 Jan;98(1):156-62
pubmed: 6423648
PLoS One. 2017 Oct 3;12(10):e0185443
pubmed: 28973031
Elife. 2016 Jul 30;5:
pubmed: 27474798
Science. 1994 Dec 23;266(5193):1996-9
pubmed: 7801127
Development. 2010 Sep 1;137(17):2857-62
pubmed: 20699297
J Cell Biol. 2006 Apr 24;173(2):219-30
pubmed: 16636144
EMBO J. 1992 Jun;11(6):2247-59
pubmed: 1376248
Dev Cell. 2006 Aug;11(2):251-62
pubmed: 16890164
EMBO J. 1992 Nov;11(11):4047-57
pubmed: 1327756
RNA. 2007 Jun;13(6):860-7
pubmed: 17449726
Nature. 2007 Feb 1;445(7127):554-8
pubmed: 17268469
Genetics. 1975 Dec;81(4):683-704
pubmed: 814037
Dev Biol. 1975 Dec;47(2):419-32
pubmed: 812739
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18403-7
pubmed: 16352710
Nucleic Acids Res. 2009 Sep;37(17):5665-77
pubmed: 19651877
Biophys J. 2011 Oct 19;101(8):1807-15
pubmed: 22004733
Dev Cell. 2007 Jun;12(6):917-30
pubmed: 17543864
Dev Biol. 2008 Apr 15;316(2):350-8
pubmed: 18328473
Curr Biol. 2008 Jul 22;18(14):1055-61
pubmed: 18639459
PLoS One. 2013 Aug 12;8(8):e71820
pubmed: 23951250
Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6724-9
pubmed: 23580621
Development. 2009 Feb;136(4):605-14
pubmed: 19168676
Development. 2021 Sep 15;148(18):
pubmed: 33722899
Development. 1997 Apr;124(7):1393-403
pubmed: 9118810
Cell. 1988 Jul 1;54(1):83-93
pubmed: 3383244
Development. 1991 Apr;111(4):909-20
pubmed: 1879360
Genetics. 2008 Apr;178(4):2017-29
pubmed: 18430932
J Cell Sci. 1983 May;61:31-70
pubmed: 6411748
Development. 2008 Jun;135(11):1969-79
pubmed: 18434412
Cell. 1986 Dec 5;47(5):735-46
pubmed: 2877746
Cell. 2007 Jul 13;130(1):153-64
pubmed: 17632062
Elife. 2016 Aug 02;5:
pubmed: 27482653
J Cell Biol. 1993 Jul;122(1):113-21
pubmed: 8314839
Elife. 2017 Jul 10;6:
pubmed: 28691901
Genetics. 2017 Aug;206(4):1829-1839
pubmed: 28615282
Nat Struct Mol Biol. 2016 Aug;23(8):705-13
pubmed: 27376588
Nat Genet. 2006 Oct;38(10):1159-65
pubmed: 16980977
Cell Mol Life Sci. 2011 Jan;68(2):243-74
pubmed: 20927566
Phys Rev Lett. 2016 Oct 28;117(18):182002
pubmed: 27834993
Nature. 1985 Feb 21-27;313(6004):639-42
pubmed: 3919303
J Digit Imaging. 2004 Sep;17(3):205-16
pubmed: 15534753
Development. 2010 Jul;137(14):2253-64
pubmed: 20570935
Mol Syst Biol. 2018 Sep 4;14(9):e8355
pubmed: 30181144
Int J Dev Biol. 2020;64(4-5-6):275-287
pubmed: 32658989
Dev Biol. 2013 Nov 1;383(1):121-31
pubmed: 23978535
Genetics. 2000 Apr;154(4):1649-62
pubmed: 10747060
Cell. 1990 May 4;61(3):535-47
pubmed: 2139805
Hereditas. 2017 Sep 29;155:12
pubmed: 28974923
PLoS One. 2008;3(11):e3651
pubmed: 18989373
Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7164-8
pubmed: 1496011
PLoS One. 2014 Nov 12;9(11):e112053
pubmed: 25390693
Genes Dev. 1998 Dec 1;12(23):3741-51
pubmed: 9851980
Biophys J. 2010 Aug 9;99(4):L33-5
pubmed: 20712981
Dev Cell. 2011 Jul 19;21(1):2-4
pubmed: 21763597
Cell. 1994 Dec 30;79(7):1221-32
pubmed: 8001156
Dev Cell. 2021 Apr 5;56(7):1000-1013.e6
pubmed: 33725482
Dev Biol. 2001 Mar 15;231(2):383-96
pubmed: 11237467
Mol Cell Biol. 1998 May;18(5):2892-900
pubmed: 9566908
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4407-12
pubmed: 15070731
EMBO J. 2002 Dec 2;21(23):6603-13
pubmed: 12456666
Nature. 1996 Feb 22;379(6567):694-9
pubmed: 8602214
Hereditas. 2019 Sep 10;156:30
pubmed: 31528161
Nature. 2002 Sep 19;419(6904):312-6
pubmed: 12239571
Genetics. 2002 Nov;162(3):1179-95
pubmed: 12454065
Cell. 2007 Jul 13;130(1):141-52
pubmed: 17632061
Elife. 2016 Feb 17;5:
pubmed: 26883601
PLoS Biol. 2011 Mar;9(3):e1000596
pubmed: 21390295
Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1878-82
pubmed: 8127899
Cell Rep. 2019 Apr 16;27(3):955-970.e7
pubmed: 30995488
Curr Protoc Cell Biol. 2008 Jun;Chapter 4:Unit 4.18
pubmed: 18551421
Trends Genet. 1996 Nov;12(11):478-83
pubmed: 8973159
Nature. 2002 Feb 14;415(6873):798-802
pubmed: 11845210

Auteurs

Xiaoli Cai (X)

Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden.

Inge Rondeel (I)

Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden.
Present address: Hubrecht Institute, 3584 CT, Utrecht, The Netherlands.

Stefan Baumgartner (S)

Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden. Stefan.Baumgartner@med.lu.se.
Department of Biology, University of Konstanz, 78457, Konstanz, Germany. Stefan.Baumgartner@med.lu.se.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH