Preparation, Characterization, and In Vitro/In Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles.

3-O-β-D-galactosylated resveratrol bioavailability nanoparticles pH-sensitive release polydopamine

Journal

AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111

Informations de publication

Date de publication:
17 Aug 2021
Historique:
received: 16 04 2021
accepted: 23 06 2021
entrez: 18 8 2021
pubmed: 19 8 2021
medline: 2 10 2021
Statut: epublish

Résumé

3-O-β-D-galactosylated resveratrol (Gal-Res) was synthesized from resveratrol (Res) and 3-O-β-D-galactose (Gal) in our previous study. In order to improve the pH sensitivity and bioavailability of Gal-Res, Gal-Res nanoparticles (Gal-Res NPs) were prepared using polydopamine (PDA) as a drug carrier. The drug loading (DL %) and entrapment efficiency (EE %) of Gal-Res NPs were 46.80% and 88.06%. The average particle size, polydispersity index (PDI), and Zeta potential of Gal-Res NPs were 179.38 ± 2.83 nm, 0.129 ± 0.013, and - 28.05 ± 0.36 mV, respectively. The transmission electron microscope (TEM) showed that Gal-Res NPs had uniform spherical morphology. Compared with the fast release of raw Gal-Res, the in vitro release of Gal-Res NPs was slow and pH-sensitive. The results of the blood vessel irritation and hemolysis test demonstrated that Gal-Res NPs had good hemocompatibility. The pharmacokinetics study in rats showed that area under the curve of plasma drug concentration time (AUC

Identifiants

pubmed: 34405290
doi: 10.1208/s12249-021-02079-7
pii: 10.1208/s12249-021-02079-7
doi:

Substances chimiques

Drug Carriers 0
Indoles 0
Polymers 0
polydopamine 0
Resveratrol Q369O8926L

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

220

Informations de copyright

© 2021. American Association of Pharmaceutical Scientists.

Références

Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose-response. 2010;8:478–500.
pubmed: 21191486 pmcid: 2990065
Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005;16(8):449–66.
pubmed: 16043028
Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, et al. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol. 2013;61(1):215–26.
pubmed: 23872128
Zhang H, Sun Q, Xu T, Hong L, Fu R, Wu J, et al. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol Med Rep. 2016;13(1):224–30.
pubmed: 26530037
Ghinis-Hozumi Y, González-Dávalos L, Antaramian A, Villarroya F, Piña E, Shimada A, et al. Effect of resveratrol and lipoic acid on sirtuin-regulated expression of metabolic genes in bovine liver and muscle slice cultures. J Anim Sci. 2015;93(8):3820.
pubmed: 26440162
Heebøll S, El-Houri RB, Hellberg Y, Haldrup D, Pedersen SB, Jessen N, et al. The effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment. J Gastroenterol Hepatol. 2016;31(3):668–75.
pubmed: 26312773
Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. B Biointerfaces. 2015;134:88–97.
pubmed: 26162977
Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B: Biointerfaces. 2015;134:47–58.
pubmed: 26142628
Sarika P, James N, Kumar P, Raj D. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. Int J Biol Macromol. 2016;86:1–9.
pubmed: 26774374
D'Souza A, Devarajan P. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release. 2015;203:126–39.
pubmed: 25701309
Wu D, Lu B, Chang C, Chen C, Wang T, Zhang Y, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials. 2009;30(7):1363–71.
pubmed: 19100617
Qian J, Zha L, Wang B, Zhang C, Hong L, Chen W. Synthesis, cytotoxicity and liver targeting of 3-O-β-D-Galactosylated Resveratrol. J Pharm Pharmacol. 2019;71(6):929–36.
pubmed: 30834522
Ruiz-Gatón L, Espuelas S, Huarte J, Larraeta E, Martin-Arbella N, Irache JM. Nanoparticles from Gantrez AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. Int J Pharm. 2019;571:118699.
Dai X, Yao J, Zhong Y, Li Y, Bai T. Preparation and characterization of Fe3O4@MTX magnetic nanoparticles for thermochemotherapy of primary central nervous system lymphoma in vitro and in vivo. Int J Nanomedicine. 2019;14:9647–63.
pubmed: 31824157 pmcid: 6901047
Vora D, Heruye S, Kumari D, Opere C, Chauhan H. Preparation, characterization and antioxidant evaluation of poorly soluble polyphenol-loaded nanoparticles for cataract treatment. AAPS PharmSciTech. 2019;20(5):163.
pubmed: 30993475
Bernsmann F, Frisch B, Ringwald C, Ball V. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption. J Colloid Interface Sci. 2010;344(1):54–60.
pubmed: 20092826
Kwon I, Bettinger C. Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B. 2018;6(43):6895–903.
pubmed: 31105962 pmcid: 6516781
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5(3):522–41.
pubmed: 32322763 pmcid: 7170807
Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, Karimzadeh A, Shadjou N, et al. Poly-dopamine-beta-cyclodextrin: a novel nanobiopolymer towards sensing of some amino acids at physiological pH. Mater Sci Eng C Mater Biol Appl. 2016;1(69):343–57.
Zhong Z, Yao X, Gao X, Jia L. Polydopamine-immobilized polypropylene microfuge tube as a pH-responsive platform for capture/release of DNA from foodborne pathogens. Anal Biochem. 2017;534:14–8.
pubmed: 28690179
Hu J, Zhang X, Wen Z, Tan Y, Huang N, Cheng S, et al. Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats. Oncotarget. 2016;7(45):73681–96.
pubmed: 27655664 pmcid: 5342007
Umerska A, Paluch K, Santos-Martinez M, Corrigan O, Medina C, Tajber L. Freeze drying of polyelectrolyte complex nanoparticles: effect of nanoparticle composition and cryoprotectant selection. Int J Pharm. 2018;552:27–38.
pubmed: 30236648
Hong L, Li X, Bao Y, Duvall C, Zhang C, Chen W, et al. Preparation, preliminary pharmacokinetic and brain targeting study of metformin encapsulated W/O/W composite submicron emulsions promoted by borneol. Eur J Pharm Sci. 2019;133:160–6.
pubmed: 30914361
Li X, Yuan H, Zhang C, Chen W, Cheng W, Chen X, et al. Preparation andin-vitro/in-vivoevaluation of curcumin nanosuspension with solubility enhancement. J Pharm Pharmacol. 2016;68(8):980–8.
pubmed: 27283220
Wang B, Cheng W, Zhang C, Bao Y, Chen W. Self-assembled micelles based on gambogenic acid-phospholipid complex for sustained-release drug delivery. J Microencapsul. 2019;36(6):1–27.
de M Barbosa R, Ribeiro L, Casadei B, da Silva C, Queiróz V, Duran N, et al. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics. 2018;10(4):231.
Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, et al. A novel drug delivery carrier comprised of nimodipine drug solution and a nanoemulsion: preparation, characterization, in vitro, and in vivo studies. Int J Nanomedicine. 2020;15:1161–72.
pubmed: 32110014 pmcid: 7036601
Zha L, Qian J, Wang B, Liu H, Hong L. In vitro/in vivo evaluation of pH-sensitive Gambogenic acid loaded zein nanoparticles with polydopamine coating. Int J Pharm. 2020;587:119665.
pubmed: 32702449
Tang X, Sun J, Ge T, Zhang K, Gui Q, Zhang S, et al. PEGylated liposomes as delivery systems for Gambogenic acid: characterization and in vitro/in vivo evaluation. Colloids Surf B: Biointerfaces. 2018;172:26–36.
pubmed: 30125771
Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B: Biointerfaces. 2016;147:376–86.
pubmed: 27566226
Hu Y, Yu C, Zhang H, Wang J, Jiang G, Kan C. pH-triggered drug release of monodispersed P(St-co-DMAEMA) nanoparticles: effects of swelling, polymer chain flexibility and drug-polymer interactions. J Nanosci Nanotechnol. 2017;17(2):900–7.
pubmed: 29671471
Tan G, Ouyang K, Lei Z, Yan L, Li FJ, W. The mechanism of pH-induced polydopamine films surface protonation and cell adhesion behavior. Sci Sin Chem. 2016;46:378–81.
Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci. 2016;463:279–87.
pubmed: 26550786
Lazarewicz J, Pluta R, Salinska E, Puka M. Beneficial effect of nimodipine on metabolic and functional disturbances in rabbit hippocampus following complete cerebral ischemia. Stroke. 1989;20(1):70–7.
pubmed: 2911838
Song X, Jiang Y, Ren C, Sun X, Zhang Q, Gong T, et al. Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study. Int J Nanomedicine. 2012;7:3689–99.
pubmed: 22888228 pmcid: 3414212
Li G, Zhao M, Zhao L. Well-defined hydroxyethyl starch-10-hydroxy camptothecin super macromolecule conjugate: cytotoxicity, pharmacodynamics research, tissue distribution test and intravenous injection safety assessment. Drug Deliv. 2016;23(8):2860–68.
Li L, Li W, Sun J, Zhang H, Gao J, Guo F, et al. Preparation and evaluation of progesterone nanocrystals to decrease muscle irritation and improve bioavailability. AAPS PharmSciTech. 2018;19(3):1254–63.
pubmed: 29313260
Santofimia-Castaño P, Salido G, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca(2+) concentration determinations. Cytotechnology. 2016;68(4):1369–80.
pubmed: 26091617
Radi ZA. Kidney pathophysiology, toxicology, and drug-induced injury in drug development. Int J Toxicol. 2019;38(3):215–27.
pubmed: 30845865

Auteurs

Beilei Wang (B)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.

Xiaoxiao Shan (X)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.

Shujie Lv (S)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.

Liqiong Zha (L)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.

Caiyun Zhang (C)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China. cyzhang6@ustc.edu.cn.

Qiannian Dong (Q)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China. dongqn2005@126.com.
Hefei Sunrise Aluminum Pigments Co. LTD, Hefei, 231131, Anhui, China. dongqn2005@126.com.

Weidong Chen (W)

School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China. anzhongchen@126.com.

Articles similaires

Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Tumor Microenvironment Nanoparticles Immunotherapy Cellular Senescence Animals
Animals Huntington Disease Mitochondria Neurons Mice
Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis

Classifications MeSH