Preparation, Characterization, and In Vitro/In Vivo Evaluation of 3-O-β-D-Galactosylated Resveratrol-Loaded Polydopamine Nanoparticles.
3-O-β-D-galactosylated resveratrol
bioavailability
nanoparticles
pH-sensitive release
polydopamine
Journal
AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111
Informations de publication
Date de publication:
17 Aug 2021
17 Aug 2021
Historique:
received:
16
04
2021
accepted:
23
06
2021
entrez:
18
8
2021
pubmed:
19
8
2021
medline:
2
10
2021
Statut:
epublish
Résumé
3-O-β-D-galactosylated resveratrol (Gal-Res) was synthesized from resveratrol (Res) and 3-O-β-D-galactose (Gal) in our previous study. In order to improve the pH sensitivity and bioavailability of Gal-Res, Gal-Res nanoparticles (Gal-Res NPs) were prepared using polydopamine (PDA) as a drug carrier. The drug loading (DL %) and entrapment efficiency (EE %) of Gal-Res NPs were 46.80% and 88.06%. The average particle size, polydispersity index (PDI), and Zeta potential of Gal-Res NPs were 179.38 ± 2.83 nm, 0.129 ± 0.013, and - 28.05 ± 0.36 mV, respectively. The transmission electron microscope (TEM) showed that Gal-Res NPs had uniform spherical morphology. Compared with the fast release of raw Gal-Res, the in vitro release of Gal-Res NPs was slow and pH-sensitive. The results of the blood vessel irritation and hemolysis test demonstrated that Gal-Res NPs had good hemocompatibility. The pharmacokinetics study in rats showed that area under the curve of plasma drug concentration time (AUC
Identifiants
pubmed: 34405290
doi: 10.1208/s12249-021-02079-7
pii: 10.1208/s12249-021-02079-7
doi:
Substances chimiques
Drug Carriers
0
Indoles
0
Polymers
0
polydopamine
0
Resveratrol
Q369O8926L
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
220Informations de copyright
© 2021. American Association of Pharmaceutical Scientists.
Références
Mukherjee S, Dudley JI, Das DK. Dose-dependency of resveratrol in providing health benefits. Dose-response. 2010;8:478–500.
pubmed: 21191486
pmcid: 2990065
Signorelli P, Ghidoni R. Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem. 2005;16(8):449–66.
pubmed: 16043028
Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, et al. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol. 2013;61(1):215–26.
pubmed: 23872128
Zhang H, Sun Q, Xu T, Hong L, Fu R, Wu J, et al. Resveratrol attenuates the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol Med Rep. 2016;13(1):224–30.
pubmed: 26530037
Ghinis-Hozumi Y, González-Dávalos L, Antaramian A, Villarroya F, Piña E, Shimada A, et al. Effect of resveratrol and lipoic acid on sirtuin-regulated expression of metabolic genes in bovine liver and muscle slice cultures. J Anim Sci. 2015;93(8):3820.
pubmed: 26440162
Heebøll S, El-Houri RB, Hellberg Y, Haldrup D, Pedersen SB, Jessen N, et al. The effect of resveratrol on experimental non-alcoholic fatty liver disease depends on severity of pathology and timing of treatment. J Gastroenterol Hepatol. 2016;31(3):668–75.
pubmed: 26312773
Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. B Biointerfaces. 2015;134:88–97.
pubmed: 26162977
Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, et al. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B: Biointerfaces. 2015;134:47–58.
pubmed: 26142628
Sarika P, James N, Kumar P, Raj D. Galactosylated alginate-curcumin micelles for enhanced delivery of curcumin to hepatocytes. Int J Biol Macromol. 2016;86:1–9.
pubmed: 26774374
D'Souza A, Devarajan P. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release. 2015;203:126–39.
pubmed: 25701309
Wu D, Lu B, Chang C, Chen C, Wang T, Zhang Y, et al. Galactosylated fluorescent labeled micelles as a liver targeting drug carrier. Biomaterials. 2009;30(7):1363–71.
pubmed: 19100617
Qian J, Zha L, Wang B, Zhang C, Hong L, Chen W. Synthesis, cytotoxicity and liver targeting of 3-O-β-D-Galactosylated Resveratrol. J Pharm Pharmacol. 2019;71(6):929–36.
pubmed: 30834522
Ruiz-Gatón L, Espuelas S, Huarte J, Larraeta E, Martin-Arbella N, Irache JM. Nanoparticles from Gantrez AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel. Int J Pharm. 2019;571:118699.
Dai X, Yao J, Zhong Y, Li Y, Bai T. Preparation and characterization of Fe3O4@MTX magnetic nanoparticles for thermochemotherapy of primary central nervous system lymphoma in vitro and in vivo. Int J Nanomedicine. 2019;14:9647–63.
pubmed: 31824157
pmcid: 6901047
Vora D, Heruye S, Kumari D, Opere C, Chauhan H. Preparation, characterization and antioxidant evaluation of poorly soluble polyphenol-loaded nanoparticles for cataract treatment. AAPS PharmSciTech. 2019;20(5):163.
pubmed: 30993475
Bernsmann F, Frisch B, Ringwald C, Ball V. Protein adsorption on dopamine-melanin films: role of electrostatic interactions inferred from zeta-potential measurements versus chemisorption. J Colloid Interface Sci. 2010;344(1):54–60.
pubmed: 20092826
Kwon I, Bettinger C. Polydopamine nanostructures as biomaterials for medical applications. J Mater Chem B. 2018;6(43):6895–903.
pubmed: 31105962
pmcid: 6516781
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5(3):522–41.
pubmed: 32322763
pmcid: 7170807
Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, Karimzadeh A, Shadjou N, et al. Poly-dopamine-beta-cyclodextrin: a novel nanobiopolymer towards sensing of some amino acids at physiological pH. Mater Sci Eng C Mater Biol Appl. 2016;1(69):343–57.
Zhong Z, Yao X, Gao X, Jia L. Polydopamine-immobilized polypropylene microfuge tube as a pH-responsive platform for capture/release of DNA from foodborne pathogens. Anal Biochem. 2017;534:14–8.
pubmed: 28690179
Hu J, Zhang X, Wen Z, Tan Y, Huang N, Cheng S, et al. Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats. Oncotarget. 2016;7(45):73681–96.
pubmed: 27655664
pmcid: 5342007
Umerska A, Paluch K, Santos-Martinez M, Corrigan O, Medina C, Tajber L. Freeze drying of polyelectrolyte complex nanoparticles: effect of nanoparticle composition and cryoprotectant selection. Int J Pharm. 2018;552:27–38.
pubmed: 30236648
Hong L, Li X, Bao Y, Duvall C, Zhang C, Chen W, et al. Preparation, preliminary pharmacokinetic and brain targeting study of metformin encapsulated W/O/W composite submicron emulsions promoted by borneol. Eur J Pharm Sci. 2019;133:160–6.
pubmed: 30914361
Li X, Yuan H, Zhang C, Chen W, Cheng W, Chen X, et al. Preparation andin-vitro/in-vivoevaluation of curcumin nanosuspension with solubility enhancement. J Pharm Pharmacol. 2016;68(8):980–8.
pubmed: 27283220
Wang B, Cheng W, Zhang C, Bao Y, Chen W. Self-assembled micelles based on gambogenic acid-phospholipid complex for sustained-release drug delivery. J Microencapsul. 2019;36(6):1–27.
de M Barbosa R, Ribeiro L, Casadei B, da Silva C, Queiróz V, Duran N, et al. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics. 2018;10(4):231.
Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, et al. A novel drug delivery carrier comprised of nimodipine drug solution and a nanoemulsion: preparation, characterization, in vitro, and in vivo studies. Int J Nanomedicine. 2020;15:1161–72.
pubmed: 32110014
pmcid: 7036601
Zha L, Qian J, Wang B, Liu H, Hong L. In vitro/in vivo evaluation of pH-sensitive Gambogenic acid loaded zein nanoparticles with polydopamine coating. Int J Pharm. 2020;587:119665.
pubmed: 32702449
Tang X, Sun J, Ge T, Zhang K, Gui Q, Zhang S, et al. PEGylated liposomes as delivery systems for Gambogenic acid: characterization and in vitro/in vivo evaluation. Colloids Surf B: Biointerfaces. 2018;172:26–36.
pubmed: 30125771
Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Jin K, et al. Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf B: Biointerfaces. 2016;147:376–86.
pubmed: 27566226
Hu Y, Yu C, Zhang H, Wang J, Jiang G, Kan C. pH-triggered drug release of monodispersed P(St-co-DMAEMA) nanoparticles: effects of swelling, polymer chain flexibility and drug-polymer interactions. J Nanosci Nanotechnol. 2017;17(2):900–7.
pubmed: 29671471
Tan G, Ouyang K, Lei Z, Yan L, Li FJ, W. The mechanism of pH-induced polydopamine films surface protonation and cell adhesion behavior. Sci Sin Chem. 2016;46:378–81.
Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, et al. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J Colloid Interface Sci. 2016;463:279–87.
pubmed: 26550786
Lazarewicz J, Pluta R, Salinska E, Puka M. Beneficial effect of nimodipine on metabolic and functional disturbances in rabbit hippocampus following complete cerebral ischemia. Stroke. 1989;20(1):70–7.
pubmed: 2911838
Song X, Jiang Y, Ren C, Sun X, Zhang Q, Gong T, et al. Nimodipine-loaded mixed micelles: formulation, compatibility, pharmacokinetics, and vascular irritability study. Int J Nanomedicine. 2012;7:3689–99.
pubmed: 22888228
pmcid: 3414212
Li G, Zhao M, Zhao L. Well-defined hydroxyethyl starch-10-hydroxy camptothecin super macromolecule conjugate: cytotoxicity, pharmacodynamics research, tissue distribution test and intravenous injection safety assessment. Drug Deliv. 2016;23(8):2860–68.
Li L, Li W, Sun J, Zhang H, Gao J, Guo F, et al. Preparation and evaluation of progesterone nanocrystals to decrease muscle irritation and improve bioavailability. AAPS PharmSciTech. 2018;19(3):1254–63.
pubmed: 29313260
Santofimia-Castaño P, Salido G, Gonzalez A. Interferences of resveratrol with fura-2-derived fluorescence in intracellular free-Ca(2+) concentration determinations. Cytotechnology. 2016;68(4):1369–80.
pubmed: 26091617
Radi ZA. Kidney pathophysiology, toxicology, and drug-induced injury in drug development. Int J Toxicol. 2019;38(3):215–27.
pubmed: 30845865