Tomography of dark-field scatter including single-exposure Moiré fringe analysis with X-ray biprism interferometry-A simulation study.
X-ray phase contrast imaging
biprism interferometry
dark-field imaging
small-angle scatter
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
revised:
02
07
2021
received:
06
10
2020
accepted:
15
07
2021
pubmed:
19
8
2021
medline:
6
11
2021
entrez:
18
8
2021
Statut:
ppublish
Résumé
In this work, we present tomographic simulations of a new hardware concept for X-ray phase-contrast interferometry wherein the phase gratings are replaced with an array of Fresnel biprisms, and Moiré fringe analysis is used instead of "phase stepping" popular with grating-based setups. Projections of a phantom consisting of four layers of parallel carbon microfibers is simulated using wave optics representation of X-ray electromagnetic waves. Simulated projections of a phantom with preferential scatter perpendicular to the direction of the fibers are performed to analyze the extraction of small-angle scatter from dark-field projections for the following: (1) biprism interferometry using Moiré fringe analysis; (2) grating interferometry using phase stepping with eight grating steps; and (3) grating interferometry using Moiré fringe analysis. Dark-field projections are modeled as projections of voxel intensities represented by a fixed finite vector basis set of scattering directions. An iterative MLEM algorithm is used to reconstruct, from simulated projection data, the coefficients of a fixed set of seven basis vectors at each voxel representing the small-angle scatter distribution. Results of reconstructed vector coefficients are shown comparing the three simulated imaging configurations. The single-exposure Moiré fringe analysis shows not only an increase in noise because of one-eighth the number of projection samples but also is obtained with less dose and faster acquisition times. Furthermore, replacing grating interferometry with biprism interferometry provides better contrast-to-noise. The simulations demonstrate the feasibility of the reconstruction of dark-field data acquired with a biprism interferometry system. With the potential of higher fringe visibility, biprism interferometry with Moiré fringe analysis might provide equal or better image quality to that of phase stepping methods with less imaging time and lower dose.
Identifiants
pubmed: 34407202
doi: 10.1002/mp.15134
pmc: PMC8855978
mid: NIHMS1728168
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6293-6311Subventions
Organisme : NIH HHS
ID : R43 EB027535
Pays : United States
Organisme : NIH HHS
ID : R01 HL135490
Pays : United States
Organisme : China Scholarship Council
ID : 201906230215
Organisme : NIBIB NIH HHS
ID : R01 EB026331
Pays : United States
Organisme : NIBIB NIH HHS
ID : R43 EB027535
Pays : United States
Organisme : NIH HHS
ID : R01 EB026331
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL135490
Pays : United States
Informations de copyright
© 2021 American Association of Physicists in Medicine.
Références
J Synchrotron Radiat. 2010 Jul;17(4):451-5
pubmed: 20567076
Med Phys. 2011 Aug;38(8):4542-5
pubmed: 21928625
Opt Express. 2013 Jul 29;21(15):17547-57
pubmed: 23938626
J Theor Biol. 1970 Dec;29(3):471-81
pubmed: 5492997
Opt Express. 2011 Aug 15;19(17):16560-73
pubmed: 21935020
Sci Rep. 2016 Apr 07;6:23953
pubmed: 27052368
Phys Med Biol. 2004 Sep 21;49(18):4335-48
pubmed: 15509069
Magn Reson Imaging. 2004 Feb;22(2):139-48
pubmed: 15010105
Phys Med Biol. 2008 Sep 7;53(17):4777-807
pubmed: 18701771
Opt Express. 2005 Aug 8;13(16):6296-304
pubmed: 19498642
Opt Express. 2011 Feb 14;19(4):3339-46
pubmed: 21369156
Opt Express. 2013 Feb 11;21(3):2674-82
pubmed: 23481723
Acta Crystallogr A Found Adv. 2019 Mar 1;75(Pt 2):223-238
pubmed: 30821257
J Opt Soc Am A Opt Image Sci Vis. 2013 Jan 1;30(1):140-8
pubmed: 23456010
Med Phys. 2016 Jan;43(1):188
pubmed: 26745911
Opt Express. 2019 Feb 18;27(4):4504-4521
pubmed: 30876068
Nature. 2015 Nov 19;527(7578):349-52
pubmed: 26581291
IEEE Nucl Sci Symp Conf Rec (1997). 2017 Oct;2017:
pubmed: 30626995
Acta Crystallogr A Found Adv. 2018 Jan 1;74(Pt 1):12-24
pubmed: 29269594
Med Phys. 2020 Nov;47(11):5761-5771
pubmed: 32969031
IEEE Trans Med Imaging. 2008 Aug;27(8):997-1002
pubmed: 18672418
Appl Opt. 2004 Feb 1;43(4):850-7
pubmed: 14960080
IEEE Trans Med Imaging. 2019 Nov;38(11):2607-2619
pubmed: 30908204
Nature. 2015 Nov 19;527(7578):353-6
pubmed: 26581292
Opt Express. 2020 Jul 20;28(15):21856-21868
pubmed: 32752459
Opt Express. 2015 Jun 15;23(12):15134-51
pubmed: 26193497
Nat Phys. 2016;12:830-834
pubmed: 27746823
Sci Rep. 2015 Jul 14;5:12011
pubmed: 26169570
Phys Med Biol. 2010 Jun 21;55(12):3317-23
pubmed: 20484780
Med Phys. 2014 Jan;41(1):011903
pubmed: 24387511
Phys Rev Lett. 2016 Oct 7;117(15):158101
pubmed: 27768366
Opt Express. 2010 Aug 2;18(16):16890-901
pubmed: 20721081
Med Phys. 2012 Jan;39(1):424-8
pubmed: 22225312
Phys Med Biol. 2007 Dec 7;52(23):6923-30
pubmed: 18029984
J Opt Soc Am A Opt Image Sci Vis. 2002 Mar;19(3):472-80
pubmed: 11876309
Med Phys. 2010 Nov;37(11):6047-54
pubmed: 21158316