Integrated process approach for degradation of p-cresol pollutant under photocatalytic reactor using activated carbon/TiO
Activated carbon
Biodegradation
P-cresol pollutant
Photocatalytic degradation
Serratia marcescens
TiO2
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
received:
21
02
2021
accepted:
11
07
2021
pubmed:
21
8
2021
medline:
14
9
2022
entrez:
20
8
2021
Statut:
ppublish
Résumé
Over the years, biodegradation has been an effective technique for waste water treatment; however, it has its own limitations. In order to achieve a higher degradation efficacy, integrated processes are being focus in this area. Therefore, the present study is targeted towards the coupling of biodegradation and photocatalytic degradation of p-cresol. The biodegradation of p-cresol was performed via lab isolate Serratia marcescens ABHI001. The obtained results confirmed that ~85% degradation of p-cresol was accomplished using Serratia marcescens ABHI001 strain in 18 h. Consequently, degradation of remaining residue (remaining p-cresol concentration initially used) was also examined in a batch reactor using activated carbon-TiO
Identifiants
pubmed: 34415523
doi: 10.1007/s11356-021-15454-5
pii: 10.1007/s11356-021-15454-5
doi:
Substances chimiques
Cresols
0
Environmental Pollutants
0
titanium dioxide
15FIX9V2JP
Charcoal
16291-96-6
4-cresol
1MXY2UM8NV
Titanium
D1JT611TNE
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
61811-61820Informations de copyright
© 2021. Crown.
Références
Acikgoz E, Ozcan B (2016) Phenol biodegradation by halophilic archaea. Int Biodeterior Biodegradation 107:140–146
doi: 10.1016/j.ibiod.2015.11.016
Ananpattarachai J, Seraphin S, Kajitvichyanukul P (2016) Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C, N Co-doped TiO2 under visible light. Environ Sci Pollut Res 23(4):3884–3896
doi: 10.1007/s11356-015-5570-8
Andersen J, Pelaez M, Guay L, Zhang Z, O’Shea K, Dionysiou DD (2013) NF-TiO
doi: 10.1016/j.jhazmat.2013.05.056
Aziz A, Jalil A, Hassan S, Hitam C, Rahman A, Fauzi A (2021) Enhanced visible-light driven multi-photoredox Cr (VI) and p-cresol by Si and Zr interplay in fibrous silica-zirconia. J Hazard Mater 401:123277
doi: 10.1016/j.jhazmat.2020.123277
Barka N, Mohamed A, Mohammed M, Samir Q (2013) Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntiaficusindica) cladodes. J of Env Chem Engg 1:144–149
doi: 10.1016/j.jece.2013.04.008
Basheer F, Farooqi IH (2012) Biodegradation of p-cresol by aerobic granules in sequencing batch reactor. J Environ Sci 24:2012–2018
doi: 10.1016/S1001-0742(11)60988-1
Borji S, Nasseri S, Mahvi A (2014) Investigation of photocatalytic degradation of phenol by Fe (III)-doped TiO2and TiO2 nanoparticles. J Environ Health Sci Eng 12:101
doi: 10.1186/2052-336X-12-101
Brooms TJ, Otieno B, Onyango MS, Ochieng A (2018) Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline. J Environ Sci Health A 53(2):99–107
Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319
doi: 10.1021/ja01269a023
Chen M, Bae J, Oh W (2006) Characterization of AC/TiO2 composite prepared with pitch binder and their photocatalytic activity. Korean Chem Soc 27:1423
doi: 10.5012/bkcs.2006.27.9.1423
Das T, Shama S, Mike M (2013) The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microb reports 5:778–786
doi: 10.1111/1758-2229.12085
Dixit A, Mungray A, Chakraborty M (2010) Photochemical oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: a kinetic study. Int J Chem Eng Appl 1:247–250
Dong H, Zeng G, Tang L, Fan C, Zhang C, He X, He Y (2015) An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res 79:128–146
doi: 10.1016/j.watres.2015.04.038
Fonseca-Cervantes OR, Pérez-Larios A, Romero Arellano VH, Sulbaran-Rangel B, Guzmán González CA (2020) Effects in band gap for photocatalysis in TiO2 support by adding gold and ruthenium. Processes 8:1032. https://doi.org/10.3390/pr8091032
doi: 10.3390/pr8091032
Fox M, Dulay M (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357
doi: 10.1021/cr00017a016
Fu J, Kyzas GZ, Cai Z, Deliyanni EA, Liu W, Zhao D (2018) Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: effects of water quality parameters and predictive modeling. Chem Eng J 335:290–300
doi: 10.1016/j.cej.2017.10.163
Giraldo L, Pirajan M (2014) Activated carbon prepared from orange peels coated with titanium oxide nanoparticles: characterization and applications in the decomposition of NOx. Orient J Chem 30(2):451–461
doi: 10.13005/ojc/300207
Glezer V (2003) Environmental effects of substituted phenols. Wiley, USA, pp 1347–1363
Gomeza CM, Del Angela G, Tzompantzia F, Gomeza R, Torres-Martínez LM (2012) Photocatalytic degradation of p-cresol on Pt/γAl
doi: 10.1016/j.jphotochem.2012.03.016
Guo Y, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Mater 100:12–19
doi: 10.1016/j.micromeso.2006.10.006
Haddadi A, Shavandi M (2013) Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int. Biodeter. Biodegr 85:29–34
Hamitouche A, Bendjama Z, Amrane A, Kaouah F, Hamane D, Ikkene R (2012) Biodegradation of p-cresol by mixed culture in batch reactor-effect of the three nitrogen sources used. Procedia Eng 33:458–464
doi: 10.1016/j.proeng.2012.01.1225
Heitkamp MA, Franklin W, Cerniglia CE (1988) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol 54:2549–2555
doi: 10.1128/aem.54.10.2549-2555.1988
Hema M, Arasi AY, Tamilselvi P, Anbarasan R (2013) Titania nanoparticles synthesized by sol-gel technique. Chem Sci Trans 2:239–245
doi: 10.7598/cst2013.344
Jiang Y, Cai X, Wu D, Ren N (2010) Biodegradation of phenol and m-cresol by mutated Candida tropicalis. J Environ Sci 22(4):621–626
doi: 10.1016/S1001-0742(09)60154-6
Jiang L, Ruan Q, Li R, Li TJ (2013) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y. J. Basic Microbiol 53:224–230
doi: 10.1002/jobm.201100460
Karpinska J, Kotowska U (2019) Removal of organic pollution in the water environment. Water 11(10)
Karthikeyan S, Gopalkrishnan NA (2011) A study on development of indigenous integrated microwave-ultraviolet reactor for degradation of p-cresol in aqueous solution. J Sci Ind Res 70:71–76
Konstantinou I, Albanis T (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14
doi: 10.1016/j.apcatb.2003.11.010
Kubo M, Fukuda H, Chua X, Yonemoto T (2007) Kinetics of ultrasonic degradation of phenol in the presence of composite particles of titanium dioxide and activated carbon. Ind Eng Chem Res 46:699–704
doi: 10.1021/ie0607999
Kumar K, Chandana L, Ghosalb P, Subrahmanyam C (2018) Simultaneous photocatalytic degradation of p-cresol and Cr (VI) by metal oxides supported reduced graphene oxide. Molecular Catalysis 451:87–95
doi: 10.1016/j.mcat.2017.11.014
Lee Y, Lee Y, Jeon C (2019) Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 9:860
doi: 10.1038/s41598-018-36165-x
Li Y, Li L, Li C, Chen W, Zeng M (2012) Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity. Appl. Catal. A: General 427:1–7
Li T, Li X, Zhao Q, Shi Y, Teng W (2014) Fabrication of ntype CuInS2 modified TiO2 nanotube arrays heterostructure photoelectrode with enhanced photoelectrocatalytic properties. Appl Catal B-Environ 156-157:362–370
doi: 10.1016/j.apcatb.2014.03.035
Lin YH, Gu YJ (2021) Biodegradation kinetic studies of phenol and p-cresol in a batch and continuous stirred-tank bioreactor with Pseudomonas putida ATCC 17484 cells. Processes 9:133
doi: 10.3390/pr9010133
Liu C, Yang D, Jiao Y, Tian Y, Wang YG, Jiang ZY (2013) Biomimetic synthesis of TiO2–SiO2–Ag nanocomposites with enhanced visible-light photocatalytic activity ACS. Appl Mater Interfaces 5:3824–3832
doi: 10.1021/am4004733
Liu Z, Xie W, Li D, Peng Y, Li Z, Liu S (2016) Biodegradation of phenol by bacteria strain Acinetobacter calcoaceticus PA isolated from phenolic wastewater. Int J Environ Res Public Health 13:300
doi: 10.3390/ijerph13030300
Mamdouh A, Rahim A, Mohamed M, Ahmed M (2015) Production of activated carbon and precipitated white nanosilica from rice husk ash. Int J Adv Res 3:491–498
Mantilla A, Tzompantzi F, Fernandez J, Dıaz-Gongora J, Gomez R (2010) Photodegradation of phenol and cresol in aqueous medium by using Zn/Al + Fe mixed oxides obtained from layered double hydroxides materials. Catal Today 150:353–357
doi: 10.1016/j.cattod.2009.11.006
Mlynarz DT, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476
doi: 10.1139/m95-063
Nweke C, Okpokwasili G (2014) Kinetics of growth and phenol degradation by Pseudomonas species isolated from petroleum refinery wastewater. Int J Biosci 4(7):28–37
Pardeshi S, Patil A (2008) A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Solar Energ 82:700–705
doi: 10.1016/j.solener.2008.02.007
Rattabal K, Nurak G (2016) Mechanism pathway and kinetics of p-cresol photocatalytic degradation over titania nanorods under UV–visible irradiation. Chem Eng J 296:420–427
doi: 10.1016/j.cej.2016.03.117
Rena Y, Penga L, Zhaoa G, Wei C (2014) Degradation of m-cresol via the ortho cleavage pathway by Citrobacter farmeri SC01. Biochem Eng J 88:108–114
doi: 10.1016/j.bej.2014.03.021
Sangwan S, Dukare A (2018) Microbe-mediated bioremediation: an eco-friendly sustainable approach for Environ. Clean-Up 145-164
Sing KSW (1998) Adsorption methods for the characterization of porous materials. Adv Colloid Interf Sci 76-77:3–11
doi: 10.1016/S0001-8686(98)00038-4
Singh R, Kumar S, Kumar S, Kumar A (2008) Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J 40:293–303
doi: 10.1016/j.bej.2007.12.015
Singh P, Vishnu M, Sharma K, Tiwary D (2015) Comparative study of dye degradation using TiO2-activated carbon nanocomposites as catalysts in photocatalytic, sonocatalytic, and photosonocatalytic reactor. Desalination Water Treat 57(43):1–13
Singh P, Borthakur A, Srivastava N, Singh R, Tiwary D, Mishra PK (2016a) Photocatalytic degradation of benzene and toluene in aqueous medium. Pollution 2(2):199–210
Singh T, Srivastava N, Mishra P, Bhatiya A, Singh N (2016b) Application of TiO
doi: 10.4028/www.scientific.net/MSF.855.20
Singh T, Srivastava N, Bhatiya AK, Mishra PK (2017) Analytical study of effective biodegradation of p-cresol using Serratia marcescens ABHI001: application in bioremediation. 3 Biotech 7(6):384
doi: 10.1007/s13205-017-1006-0
Sorokhaibam L, Ahmaruzzaman M (2014) Industrial wastewater treatment, recycling and reuse. Elsevier, Amsterdam, pp 323–368
doi: 10.1016/B978-0-08-099968-5.00008-8
Surkatti R, El-Naas MH (2014) Biological treatment of wastewater contaminated with p-cresol using Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Water Process Eng 1:84–90
Tang C, Huang X, Wang H, Shi H, Zhao G (2020) Mechanism investigation on the enhanced photocatalytic oxidation of nonylphenol on hydrophobic TiO
Tryba B, Morawski AW, Inagaki M (2003) A new route for preparation of TiO2-mounted activated carbon. Appl. Catal. B: Environ 46:203–208
Vann K, Thuy L (2014) Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Progress in Natural Science: Mater Int 24:191–198
doi: 10.1016/j.pnsc.2014.05.012
Wang G, Xu D, Guo W (2017) Preparation of TiO2 nanoparticle and photocatalytic properties on the degradation of phenol IOP Conf. Ser: Earth Environ Sci 59:012046
Xing B, Shi C, Zhang C, Yi G, Chen L, Guo H, Huang G, Cao J (2016) Preparation of TiO2/activated carbon composites for photocatalytic degradation of RhB under UV light irradiation. J Nanomater 2016:1–10
doi: 10.1155/2016/8393648
Zangeneh H, Zinatizadeh A, Habibi M, Akia M, Isa M (2015) Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review. J Ind Eng Chem 26:1–36
doi: 10.1016/j.jiec.2014.10.043