Metabolic effects of high-intensity interval training and essential amino acids.
Cardiometabolic health
Exercise
Interval exercise
Nutrition
Protein
Sex differences
Journal
European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
20
05
2021
accepted:
13
08
2021
pubmed:
25
8
2021
medline:
16
2
2022
entrez:
24
8
2021
Statut:
ppublish
Résumé
High-intensity interval training (HIIT) promotes positive cardiometabolic and body composition changes. Essential amino acids (EAA) may support changes associated with HIIT, but evaluation of potential synergistic effects is lacking. The purpose of this study was to compare independent and combined effects of HIIT and EAA on total body composition and metabolism in men and women considered overweight/obese; an exploratory aim was to evaluate the modulatory effects of sex. Sixty-six healthy adults (50% female; Age: 36.7 ± 6.0 years; BMI: 32.0 ± 4.2 kg/m
Identifiants
pubmed: 34427732
doi: 10.1007/s00421-021-04792-4
pii: 10.1007/s00421-021-04792-4
doi:
Substances chimiques
Amino Acids, Essential
0
Biomarkers
0
Banques de données
ClinicalTrials.gov
['NCT04080102']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3297-3311Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S (2020) Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol 105(12):2007–2021. https://doi.org/10.1113/EP088548
doi: 10.1113/EP088548
pubmed: 33002256
Atakan MM, Güzel Y, Bulut S, Koşar ŞN, McConell GK, Turnagöl HH (2021) Six high-intensity interval training sessions over 5 days increases maximal oxygen uptake, endurance capacity, and sub-maximal exercise fat oxidation as much as 6 high-intensity interval training sessions over 2 weeks. J Sport Health Sci 10(4):478–487
doi: 10.1016/j.jshs.2020.06.008
Bartlett JD, Hawley JA, Morton JP (2015) Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci 15(1):3–12. https://doi.org/10.1080/17461391.2014.920926
doi: 10.1080/17461391.2014.920926
pubmed: 24942068
Bell KE, Seguin C, Parise G, Baker SK, Phillips SM (2015) Day-to-day changes in muscle protein synthesis in recovery from resistance, aerobic, and high-intensity interval exercise in older men. J Gerontol A Biol Sci Med Sci 70(8):1024–1029. https://doi.org/10.1093/gerona/glu313
doi: 10.1093/gerona/glu313
pubmed: 25650305
Blue MNM, Smith-Ryan AE, Trexler ET, Hirsch KR (2017) The effects of high intensity interval training on muscle size and quality in overweight and obese adults. J Sci Med Sport. https://doi.org/10.1016/j.jsams.2017.06.001
doi: 10.1016/j.jsams.2017.06.001
pubmed: 28647284
pmcid: 7104622
Bohe J, Low A, Wolfe RR, Rennie MJ (2003) Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol 552(Pt 1):315–324. https://doi.org/10.1113/jphysiol.2003.050674
doi: 10.1113/jphysiol.2003.050674
pubmed: 12909668
pmcid: 2343318
Boutcher SH (2011) High-intensity intermittent exercise and fat loss. J Obes 2011:868305. https://doi.org/10.1155/2011/868305
doi: 10.1155/2011/868305
pubmed: 21113312
Callahan MJ, Parr EB, Hawley JA, Camera DM (2021) Can high-intensity interval training promote skeletal muscle anabolism? Sports Med 51(3):405–421
doi: 10.1007/s40279-020-01397-3
Forbes SC, Candow DG, Smith-Ryan AE, Hirsch KR, Roberts MD, VanDusseldorp TA, Stratton MT, Kaviani M, Little JP (2020) Supplements and nutritional interventions to augment high-intensity interval training physiological and performance adaptations—a narrative review. Nutrients 12(2):390
doi: 10.3390/nu12020390
Gibala MJ, Little JP, Macdonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590(5):1077–1084. https://doi.org/10.1113/jphysiol.2011.224725
doi: 10.1113/jphysiol.2011.224725
pubmed: 22289907
pmcid: 3381816
Gibala MJ, Gillen JB, Percival ME (2014) Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Med 44(Suppl 2):S127-137. https://doi.org/10.1007/s40279-014-0259-6
doi: 10.1007/s40279-014-0259-6
pubmed: 25355187
Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ (2013) Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity 21(11):2249–2255
doi: 10.1002/oby.20379
Goodpaster BH, Katsiaras A, Kelley DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52(9):2191–2197. https://doi.org/10.2337/diabetes.52.9.2191
doi: 10.2337/diabetes.52.9.2191
pubmed: 12941756
Herrmann SD, Willis EA, Honas JJ, Lee J, Washburn RA, Donnelly JE (2015) Energy intake, nonexercise physical activity, and weight loss in responders and nonresponders: The Midwest Exercise Trial 2. Obesity 23(8):1539–1549
doi: 10.1002/oby.21073
Heydari M, Freund J, Boutcher SH (2012) The effect of high-intensity intermittent exercise on body composition of overweight young males. J Obes 2012:480467. https://doi.org/10.1155/2012/480467
doi: 10.1155/2012/480467
pubmed: 22720138
pmcid: 3375095
Hirsch KR, Greenwalt CE, Saylor HE, Gould LM, Harrison CH, Brewer GJ, Blue MNM, Ferrando AA, Huffman KM, Mayer-Davis EJ, Ryan ED, Smith-Ryan AE (2021) High-intensity interval training and essential amino acid supplementation: effects on muscle characteristics and whole-body protein turnover. Physiol Rep 9(1):e14655. https://doi.org/10.14814/phy2.14655
doi: 10.14814/phy2.14655
pubmed: 33369879
Imboden MT, Harber MP, Whaley MH, Finch WH, Bishop DL, Kaminsky LA (2018) Cardiorespiratory fitness and mortality in healthy men and women. J Am Coll Cardiol 72(19):2283–2292
doi: 10.1016/j.jacc.2018.08.2166
Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, Davies MJ (2015) The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev 16(11):942–961. https://doi.org/10.1111/obr.12317
doi: 10.1111/obr.12317
pubmed: 26481101
Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, Ergun DL (2012) Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (silver Spring) 20(6):1313–1318. https://doi.org/10.1038/oby.2011.393
doi: 10.1038/oby.2011.393
Kephart WC, Wachs TD, Mac Thompson R, Mobley CB, Fox CD, McDonald JR, Ferguson BS, Young KC, Nie B, Martin JS (2016) Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids 48(3):779–789
doi: 10.1007/s00726-015-2125-8
Kim I-Y, Schutzler SE, Azhar G, Wolfe RR, Ferrando AA, Coker RH (2017) Short term elevation in dietary protein intake does not worsen insulin resistance or lipids in older adults with metabolic syndrome: a randomized-controlled trial. BMC Nutr 3(1):33
doi: 10.1186/s40795-017-0152-4
Knuiman P, van Loon LJ, Wouters J, Hopman M, Mensink M (2019) Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: a double-blind randomized controlled trial. Am J Clin Nutr 110(2):508–518
doi: 10.1093/ajcn/nqz093
MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity. J Physiol 595(9):2915–2930
doi: 10.1113/JP273196
Macpherson RE, Hazell TJ, Olver TD, Paterson DH, Lemon PW (2011) Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc 43(1):115–122. https://doi.org/10.1249/MSS.0b013e3181e5eacd
doi: 10.1249/MSS.0b013e3181e5eacd
pubmed: 20473222
McMullan RC, Ferris MT, Bell TA, Menachery VD, Baric RS, Hua K, Pomp D, Smith-Ryan AE, de Villena FPM (2018) CC 002/Unc females are mouse models of exercise-induced paradoxical fat response. Physiol Rep 6(12):e13716
doi: 10.14814/phy2.13716
Medicine ACoS, (2013) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins
Milanovic Z, Sporis G, Weston M (2015) Effectiveness of High-Intensity Interval Training (HIT) and continuous endurance training for VO
doi: 10.1007/s40279-015-0365-0
pubmed: 26243014
Moniz SC, Islam H, Hazell TJ (2020) Mechanistic and methodological perspectives on the impact of intense interval training on post-exercise metabolism. Scand J Med Sci Sports 30(4):638–651
doi: 10.1111/sms.13610
Ortega RM, Pérez-Rodrigo C, López-Sobaler AM (2015) Dietary assessment methods: dietary records. Nutr Hosp 31(3):38–45
pubmed: 25719769
Paddon-Jones D, Sheffield-Moore M, Aarsland A, Wolfe RR, Ferrando AA (2005) Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab 288(4):E761-767. https://doi.org/10.1152/ajpendo.00291.2004
doi: 10.1152/ajpendo.00291.2004
pubmed: 15572657
Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588(23):4795–4810
doi: 10.1113/jphysiol.2010.199448
Phillips SM, Chevalier S, Leidy HJ (2016) Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab 41(5):565–572
doi: 10.1139/apnm-2015-0550
Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD (2018) The physical activity guidelines for Americans. JAMA 320:20–28
doi: 10.1001/jama.2018.14854
Ryan BJ, Schleh MW, Ahn C, Ludzki AC, Gillen JB, Varshney P, Van Pelt DW, Pitchford LM, Chenevert TL, Gioscia-Ryan RA (2020) Moderate-intensity exercise and high-intensity interval training affect insulin sensitivity similarly in obese adults. J Clin Endocrinol Metab 105(8):e2941–e2959
doi: 10.1210/clinem/dgaa345
Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA (2016) Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. J Appl Physiol 121(1):279–288
doi: 10.1152/japplphysiol.00024.2016
Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, Klochak AL, Lonac MC, Paris HL, Szallar SE, Wood LM, Peelor FF 3rd, Holmes WE, Hellerstein MK, Bell C, Hamilton KL, Miller BF (2014) Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J 28(6):2705–2714. https://doi.org/10.1096/fj.13-246595
doi: 10.1096/fj.13-246595
pubmed: 24599968
Smith-Ryan AE, Melvin MN, Wingfield HL (2015) High-intensity interval training: modulating interval duration in overweight/obese men. Phys Sportsmed 43(2):107–113. https://doi.org/10.1080/00913847.2015.1037231
doi: 10.1080/00913847.2015.1037231
pubmed: 25913937
pmcid: 4427241
Smith-Ryan AE, Trexler ET, Wingfield HL, Blue MN (2016) Effects of high-intensity interval training on cardiometabolic risk factors in overweight/obese women. J Sports Sci 34(21):2038–2046. https://doi.org/10.1080/02640414.2016.1149609
doi: 10.1080/02640414.2016.1149609
pubmed: 26934687
pmcid: 5010533
Smith-Ryan AE, Mock MG, Ryan ED, Gerstner GR, Trexler ET, Hirsch KR (2017) Validity and reliability of a 4-compartment body composition model using dual energy X-ray absorptiometry-derived body volume. Clin Nutr 36(3):825–830. https://doi.org/10.1016/j.clnu.2016.05.006
doi: 10.1016/j.clnu.2016.05.006
pubmed: 27237796
Tarnopolsky MA (2008) Sex differences in exercise metabolism and the role of 17-beta estradiol. Med Sci Sports Exerc 40(4):648–654. https://doi.org/10.1249/MSS.0b013e31816212ff
doi: 10.1249/MSS.0b013e31816212ff
pubmed: 18317381
Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281(2):E197-206. https://doi.org/10.1152/ajpendo.2001.281.2.E197
doi: 10.1152/ajpendo.2001.281.2.E197
pubmed: 11440894
Townsend JR, Stout JR, Morton AB, Jajtner AR, Gonzalez AM, Wells AJ, Mangine GT, McCormack WP, Emerson NS, Robinson EH IV (2013) Excess post-exercise oxygen consumption (EPOC) following multiple effort sprint and moderate aerobic exercise. Kinesiology 45(1):16
Turk Y, Theel W, Kasteleyn MJ, Franssen FME, Hiemstra PS, Rudolphus A, Taube C, Braunstahl GJ (2017) High intensity training in obesity: a meta-analysis. Obes Sci Pract 3(3):258–271. https://doi.org/10.1002/osp4.109
doi: 10.1002/osp4.109
pubmed: 29071102
pmcid: 5598019
Westerterp-Plantenga MS, Lemmens SG, Westerterp KR (2012) Dietary protein–its role in satiety, energetics, weight loss and health. Br J Nutr 108(S2):S105–S112
doi: 10.1017/S0007114512002589
Weston KS, Wisløff U, Coombes JS (2014) High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med 48(16):1227–1234
doi: 10.1136/bjsports-2013-092576
Wewege M, van den Berg R, Ward R, Keech A (2017) The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev 18(6):635–646
doi: 10.1111/obr.12532
Wingfield HL, Smith-Ryan AE, Melvin MN, Roelofs EJ, Trexler ET, Hackney AC, Weaver MA, Ryan ED (2015) The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial. Sports Med Open 1(1):11. https://doi.org/10.1186/s40798-015-0010-3
doi: 10.1186/s40798-015-0010-3
pubmed: 27747847
pmcid: 4512833