Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles.
Bacteria
Biofilm
Burkholderia
Nanoparticle
Journal
BMC microbiology
ISSN: 1471-2180
Titre abrégé: BMC Microbiol
Pays: England
ID NLM: 100966981
Informations de publication
Date de publication:
24 08 2021
24 08 2021
Historique:
received:
10
05
2021
accepted:
13
08
2021
entrez:
25
8
2021
pubmed:
26
8
2021
medline:
7
1
2022
Statut:
epublish
Résumé
Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi. Here, we examine the antibiofilm activity of Burkholderia thailandensis OMVs against the oral biofilm-forming pathogen Streptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are co-administered with gentamicin, the efficacy of the antibiotic against S. mutans biofilms is enhanced. These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that can inhibit and potentially eradicate biofilms.
Sections du résumé
BACKGROUND
Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi.
RESULTS
Here, we examine the antibiofilm activity of Burkholderia thailandensis OMVs against the oral biofilm-forming pathogen Streptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are co-administered with gentamicin, the efficacy of the antibiotic against S. mutans biofilms is enhanced.
CONCLUSION
These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that can inhibit and potentially eradicate biofilms.
Identifiants
pubmed: 34429066
doi: 10.1186/s12866-021-02296-x
pii: 10.1186/s12866-021-02296-x
pmc: PMC8386047
doi:
Substances chimiques
Anti-Bacterial Agents
0
Gentamicins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
234Subventions
Organisme : NIAID NIH HHS
ID : T32 AI007044
Pays : United States
Informations de copyright
© 2021. The Author(s).
Références
Microbiology (Reading). 2000 Oct;146 ( Pt 10):2395-2407
pubmed: 11021916
Scientifica (Cairo). 2016;2016:2816812
pubmed: 27293967
Mol Microbiol. 2008 Jul;69(2):491-502
pubmed: 18630345
J Bacteriol. 2000 Mar;182(5):1374-82
pubmed: 10671461
Mol Microbiol. 2016 Mar;99(5):945-59
pubmed: 26564551
Science. 1999 May 21;284(5418):1318-22
pubmed: 10334980
Sci Rep. 2016 Apr 27;6:24866
pubmed: 27117743
J Bacteriol. 1998 Oct;180(20):5478-83
pubmed: 9765585
Int J Antimicrob Agents. 2016 Sep;48(3):298-304
pubmed: 27502751
Community Dent Health. 2016 Jun;33(2):66-8
pubmed: 27352461
Antimicrob Agents Chemother. 2017 Jan 24;61(2):
pubmed: 27872074
J Microbiol. 2020 Jul;58(7):550-562
pubmed: 32281050
Front Microbiol. 2014 Sep 09;5:474
pubmed: 25250022
J Bacteriol. 2008 Aug;190(15):5339-52
pubmed: 18539738
J Bacteriol. 2006 Aug;188(16):5945-57
pubmed: 16885463
Lancet. 2001 Jul 14;358(9276):135-8
pubmed: 11463434
J Exp Med. 2012 Jul 2;209(7):1273-87
pubmed: 22734046
Appl Environ Microbiol. 2002 Mar;68(3):1196-203
pubmed: 11872468
Int J Oral Sci. 2009 Dec;1(4):229-34
pubmed: 20690427
Vaccine. 2011 Oct 26;29(46):8381-9
pubmed: 21871517
Sci Transl Med. 2014 Sep 17;6(254):254ra127
pubmed: 25232179
Nat Rev Microbiol. 2017 Dec;15(12):740-755
pubmed: 28944770
Curr Pharm Des. 2015;21(1):5-11
pubmed: 25189863
Appl Environ Microbiol. 2012 Sep;78(17):6217-24
pubmed: 22752175
J Bacteriol. 2010 Dec;192(23):6191-9
pubmed: 20935098
Biochim Biophys Acta. 2014 Aug;1843(8):1612-9
pubmed: 24370777
Cell Chem Biol. 2017 Dec 21;24(12):1437-1444.e3
pubmed: 29033316
J Biol Chem. 2011 Apr 15;286(15):13272-81
pubmed: 21324899
Infect Immun. 2005 Jan;73(1):219-25
pubmed: 15618157
Nat Rev Microbiol. 2017 Aug;15(8):453-464
pubmed: 28529326
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8437-8448
pubmed: 32241895
Appl Environ Microbiol. 2017 Aug 17;83(17):
pubmed: 28687645
Mol Microbiol. 2006 Aug;61(4):839-46
pubmed: 16879642
Int J Biol Macromol. 2015 Aug;79:761-78
pubmed: 26047901
J Antimicrob Chemother. 2003 Nov;52(5):782-9
pubmed: 14563892
Adv Drug Deliv Rev. 2017 May 15;114:132-142
pubmed: 28501509
FEMS Microbiol Lett. 2011 Jul;320(2):110-7
pubmed: 21521360
Appl Environ Microbiol. 2020 Jul 2;86(14):
pubmed: 32414800
Curr Top Med Chem. 2015;15(16):1552-76
pubmed: 25877092
Biotechnol Bioeng. 1998 Aug 5;59(3):261-72
pubmed: 10099336
Can J Microbiol. 2002 Sep;48(9):810-20
pubmed: 12455613
Appl Environ Microbiol. 2012 Apr;78(8):2914-22
pubmed: 22327589
FEMS Microbiol Rev. 2008 Mar;32(2):149-67
pubmed: 18194336
J Bacteriol. 2006 Apr;188(8):2983-92
pubmed: 16585759
Nat Rev Microbiol. 2016 Aug 11;14(9):563-75
pubmed: 27510863
Appl Microbiol Biotechnol. 2010 May;86(5):1323-36
pubmed: 20336292
J Biol Chem. 2016 Jun 10;291(24):12538-12546
pubmed: 27129225
Microbiology (Reading). 2013 Mar;159(Pt 3):436-445
pubmed: 23393147
Appl Environ Microbiol. 1990 Jun;56(6):1960-2
pubmed: 16348232
J Biol Chem. 2011 Jan 14;286(2):1269-76
pubmed: 21056982
J Bacteriol. 1996 May;178(10):2767-74
pubmed: 8631663
J Med Microbiol. 2006 Aug;55(Pt 8):1135-1140
pubmed: 16849735
Clin Vaccine Immunol. 2009 Oct;16(10):1420-8
pubmed: 19692625
Microbiol Rev. 1986 Dec;50(4):353-80
pubmed: 3540569
Curr Microbiol. 2016 Aug;73(2):183-9
pubmed: 27113589
Sci Rep. 2015 Oct 20;5:15329
pubmed: 26483327
FEBS J. 2008 Aug;275(15):3827-35
pubmed: 18573103
Int J Mol Sci. 2010;11(12):5095-108
pubmed: 21614194
Biosci Biotechnol Biochem. 2011;75(3):605-7
pubmed: 21389607
Antimicrob Agents Chemother. 1975 Mar;7(3):333-5
pubmed: 1137387
Nat Rev Drug Discov. 2003 Feb;2(2):114-22
pubmed: 12563302
J Vis Exp. 2014 Jan 02;(83):e50854
pubmed: 24430536
N Biotechnol. 2017 May 25;36:26-36
pubmed: 28065676