Menthol as an effective inhibitor of quorum sensing and biofilm formation in Candida albicans and Candida glabrata by targeting the transcriptional repressor TUP1.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 06 09 2024
accepted: 23 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Menthol, a natural quorum sensing molecule, is derived from the Mentha species. Combating pathogenicity by inactivating quorum sensing is an emerging approach. Therefore, our objective was to investigate anti-quorum sensing and anti-biofilm potentials of menthol in Candida albicans and Candida glabrata. The antifungal properties of menthol were evaluated using a broth microdilution assay and a time-kill assay, and its effects on quorum sensing-mediated virulence factors, cellular reactive oxygen species (ROS), and biofilm formation were tested by evaluating TUP1 expression levels in both C. albicans and C. glabrata. Quorum sensing-mediated virulence factors and biofilm formation were inhibited by menthol in both C. albicans and C. glabrata. Furthermore, coinciding with elevated ROS levels, mRNAs of the quorum sensing-related gene TUP1 were upregulated in both C. albicans and C. glabrata. This study highlights the anti-quorum sensing potential of menthol through the inhibition of quorum sensing-mediated virulence factors, ROS generation, and biofilm development by targeting TUP1, which could have potential in the treatment of Candida infections.

Sections du résumé

BACKGROUND BACKGROUND
Menthol, a natural quorum sensing molecule, is derived from the Mentha species. Combating pathogenicity by inactivating quorum sensing is an emerging approach. Therefore, our objective was to investigate anti-quorum sensing and anti-biofilm potentials of menthol in Candida albicans and Candida glabrata.
METHODS METHODS
The antifungal properties of menthol were evaluated using a broth microdilution assay and a time-kill assay, and its effects on quorum sensing-mediated virulence factors, cellular reactive oxygen species (ROS), and biofilm formation were tested by evaluating TUP1 expression levels in both C. albicans and C. glabrata.
RESULTS RESULTS
Quorum sensing-mediated virulence factors and biofilm formation were inhibited by menthol in both C. albicans and C. glabrata. Furthermore, coinciding with elevated ROS levels, mRNAs of the quorum sensing-related gene TUP1 were upregulated in both C. albicans and C. glabrata.
CONCLUSIONS CONCLUSIONS
This study highlights the anti-quorum sensing potential of menthol through the inhibition of quorum sensing-mediated virulence factors, ROS generation, and biofilm development by targeting TUP1, which could have potential in the treatment of Candida infections.

Identifiants

pubmed: 39485542
doi: 10.1007/s11033-024-10054-1
pii: 10.1007/s11033-024-10054-1
doi:

Substances chimiques

Menthol 1490-04-6
Antifungal Agents 0
Reactive Oxygen Species 0
Fungal Proteins 0
Repressor Proteins 0
Virulence Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1114

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Sharma M, Chakrabarti A (2023) Candidiasis and other emerging yeasts. Curr Fungal Infect Rep 17(1):15–24. https://doi.org/10.1007/s12281-023-00455-3
doi: 10.1007/s12281-023-00455-3 pubmed: 36741271 pmcid: 9886541
Denning DW (2024) Global incidence and mortality of severe fungal disease. Lancet Infect Dis 24(5):e268. https://doi.org/10.1016/S1473-3099(23)00692-8
doi: 10.1016/S1473-3099(23)00692-8
Chen L, Zhang L, Xie Y, Wang Y, Tian X, Fang W et al (2023) Confronting antifungal resistance, tolerance, and persistence: advances in drug target discovery and delivery systems. Adv Drug Deliv Rev 200:115007. https://doi.org/10.1016/j.addr.2023.115007
doi: 10.1016/j.addr.2023.115007 pubmed: 37437715
Rodrigues CF, Černáková L (2020) Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development. Genes 11(4):444. https://doi.org/10.3390/genes11040444
doi: 10.3390/genes11040444 pubmed: 32325685 pmcid: 7231263
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP (2024) Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: from cell repellence to fungicidal activity. Acta Biomater 177:20–36. https://doi.org/10.1016/j.actbio.2024.02.006
doi: 10.1016/j.actbio.2024.02.006 pubmed: 38342192
Xu Z, Huang T, Du M, Soteyome T, Lan H, Hong W et al (2022) Regulatory network controls microbial biofilm development, with Candida albicans as a representative: from adhesion to dispersal. Bioengineered 13(1):253–267. https://doi.org/10.1080/21655979.2021.1996747
doi: 10.1080/21655979.2021.1996747 pubmed: 34709974 pmcid: 8805954
Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y (2019) Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review. Molecules 24(10):1950. https://doi.org/10.3390/molecules24101950
doi: 10.3390/molecules24101950 pubmed: 31117232 pmcid: 6571750
Chow EWL, Pang LM, Wang Y (2021) From Jekyll to Hyde: the yeast–hyphal transition of Candida albicans. Pathogens 10(7):859. https://doi.org/10.3390/pathogens10070859
doi: 10.3390/pathogens10070859 pubmed: 34358008 pmcid: 8308684
Kruppa M (2009) Quorum sensing and Candida albicans. Mycoses 52(1):1–10. https://doi.org/10.1111/j.1439-0507.2008.01626.x
doi: 10.1111/j.1439-0507.2008.01626.x pubmed: 18983434
Singh BN, Upreti DK, Singh BR, Pandey G, Verma S, Roy S et al (2015) Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother 59(4):2153–2168. https://doi.org/10.1128/AAC.03599-14
doi: 10.1128/AAC.03599-14 pubmed: 25645848 pmcid: 4356769
Gupta P, Sharma M, Arora N, Pruthi V, Poluri KM (2018) Chemistry and biology of farnesol and its derivatives: quorum sensing molecules with immense therapeutic potential. Curr Top Med Chem 18(22):1937–1954. https://doi.org/10.2174/1568026619666181210124159
doi: 10.2174/1568026619666181210124159 pubmed: 30526460
Sharma M, Manoharlal R, Puri N, Prasad R (2010) Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep 30(6):391–404. https://doi.org/10.1042/BSR20090151
doi: 10.1042/BSR20090151 pubmed: 20017731
Hamdy R, Soliman SS, Alsaadi AI, Fayed B, Hamoda AM, Elseginy SA et al (2020) Design and synthesis of new drugs inhibitors of Candida albicans hyphae and biofilm formation by upregulating the expression of TUP1 transcription repressor gene. Eur J Pharm Sci 148:105327. https://doi.org/10.1016/j.ejps.2020.105327
doi: 10.1016/j.ejps.2020.105327 pubmed: 32272212 pmcid: 8569251
Padmavathi AR, Das PSM, Priya A, Sushmitha A, Pandian TJ SK et al (2020) Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling 36(1):56–72. https://doi.org/10.1080/08927014.2020.1715371
doi: 10.1080/08927014.2020.1715371 pubmed: 31997658
Baghiat Esfahani M, Khodavandi A, Alizadeh F, Bahador N (2023) Possible molecular targeting of biofilm-associated genes by nano-Ag in Candida albicans. Appl Biochem Biotechnol 196(7):4205–4233. https://doi.org/10.1007/s12010-023-04758-6
doi: 10.1007/s12010-023-04758-6
Sadri A, Khodavandi A, Alizadeh F (2016) Quorum-sensing quenching compounds Allium sativum, Allium hirtifolium and Allium cepa: the probable quorum-sensing quenching compounds against Candida albicans. Biosci Biotech Res Asia 13(3):1457. https://doi.org/10.13005/bbra/2289
doi: 10.13005/bbra/2289
Ćirić AD, Petrović JD, Glamočlija JM, Smiljković MS, Nikolić MM, Stojković DS et al (2019) Natural products as biofilm formation antagonists and regulators of quorum sensing functions: a comprehensive review update and future trends. South Afr J Bot 120:65–80. https://doi.org/10.1016/j.sajb.2018.09.010
doi: 10.1016/j.sajb.2018.09.010
Husain FM, Ahmad I, Khan MS, Ahmad E, Tahseen Q (2015) Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front Microbiol 6:420. https://doi.org/10.3389/fmicb.2015.00420
doi: 10.3389/fmicb.2015.00420 pubmed: 26029178 pmcid: 4429619
Zore G, Thakre A, Abdulghani M, Bhosle K, Shelar A, Patil R et al (2022) Menthol inhibits Candida albicans growth by affecting the membrane integrity followed by apoptosis. Evid Based Complement Alternat Med 2022:1297888. https://doi.org/10.1155/2022/1297888
doi: 10.1155/2022/1297888 pubmed: 36337581 pmcid: 9635957
Ji Y, Han J, Moses M, Wang D, Wu L, Xue W et al (2024) The antimicrobial property of JY-1, a complex mixture of Traditional Chinese Medicine, is linked to it abilities to suppress biofilm formation and disrupt membrane permeability. Microb Pathog 189:106573. https://doi.org/10.1016/j.micpath.2024.106573
doi: 10.1016/j.micpath.2024.106573 pubmed: 38354989
Norouzi N, Alizadeh F, Khodavandi A, Jahangiri M (2021) Antifungal activity of menthol alone and in combination on growth inhibition and biofilm formation of Candida albicans. J Herb Med 29:100495. https://doi.org/10.1016/j.hermed.2021.100495
doi: 10.1016/j.hermed.2021.100495
Fazal H, Akram M, Ahmad N, Qaisar M, Kanwa F, Rehman I et al (2023) Nutritionally rich biochemical profile in essential oil of various Mentha species and their antimicrobial activities. Protoplasma 260(2):557–570. https://doi.org/10.1007/s00709-022-01799-2
doi: 10.1007/s00709-022-01799-2 pubmed: 35943630
Sharifzadeh A, Khosravi AR, Shokri H, Tari PS (2017) Synergistic anticandidal activity of menthol in combination with itraconazole and nystatin against clinical Candida glabrata and Candida krusei isolates. Microb Pathog 107:390–396. https://doi.org/10.1016/j.micpath.2017.04.021
doi: 10.1016/j.micpath.2017.04.021 pubmed: 28431915
Hajigholamreza H, Sharifzadeh A, Hassan J, Shokri H, Akbaripazouki A, Pakbin B et al (2023) Influence of menthol on biofilm formation, ergosterol content, and cell surface hydrophobicity of Candida glabrata. FEMS Microbiol Lett 370:fnad065. https://doi.org/10.1093/femsle/fnad065
doi: 10.1093/femsle/fnad065 pubmed: 37429611
Scorneaux B, Angulo D, Borroto-Esoda K, Ghannoum M, Peel M, Wring S (2017) SCY-078 is fungicidal against Candida species in time-kill studies. Antimicrob Agents Chemother 61(3):e01961–e01916. https://doi.org/10.1128/AAC.01961-16
doi: 10.1128/AAC.01961-16 pubmed: 28069658 pmcid: 5328566
Macdonald F, Odds FC (1980) Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J Med Microbiol 13(3):423–435. https://doi.org/10.1099/00222615-13-3-423
doi: 10.1099/00222615-13-3-423 pubmed: 6997486
Price MF, Wilkinson ID, Gentry LO (1982) Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 20(1):7–14. https://doi.org/10.1080/00362178285380031
doi: 10.1080/00362178285380031 pubmed: 7038928
Toyoda M, Cho T, Kaminishi H, Sudoh M, Chibana H (2004) Transcriptional profiling of the early stages of germination in Candida albicans by real-time RT-PCR. FEMS Yeast Res 5(3):287–296. https://doi.org/10.1016/j.femsyr.2004.08.004
doi: 10.1016/j.femsyr.2004.08.004 pubmed: 15556091
Low CF, Chong PP, Yong PVC, Lim CSY, Ahmad Z, Othman F (2008) Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J Appl Microbiol 105(6):2169–2177. https://doi.org/10.1111/j.1365-2672.2008.03912.x
doi: 10.1111/j.1365-2672.2008.03912.x pubmed: 19120662
Hosseini SMK, Alizadeh F, Nouripour-Sisakht S, Khodavandi A (2022) Synergistic interaction of fluconazole/sodium bicarbonate on the inhibition of Candida glabrata phospholipase gene. Braz J Pharm Sci 58:e19897. https://doi.org/10.1590/s2175-97902022e19897
doi: 10.1590/s2175-97902022e19897
Khodavandi A, Harmal NS, Alizadeh F, Scully OJ, Sidik SM, Othman F et al (2011) Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine 19(1):56–63. https://doi.org/10.1016/j.phymed.2011.08.060
doi: 10.1016/j.phymed.2011.08.060 pubmed: 21924600
Shaygan S, Khodavandi A (2019) Inhibitory effect of menthol on expression of aspartyl proteinase 1 in fluconazole-resistant Candida albicans. J Herbmed Pharmacol 8(1):35–40. https://doi.org/10.15171/jhp.2019.06
doi: 10.15171/jhp.2019.06
Oliveira F, Silva E, Matias A, Silva JM, Reis RL, Duarte ARC (2023) Menthol-based deep eutectic systems as antimicrobial and anti-inflammatory agents for wound healing. Eur J Pharm Sci 182:106368. https://doi.org/10.1016/j.ejps.2022.106368
doi: 10.1016/j.ejps.2022.106368 pubmed: 36572356
Samber N, Khan A, Varma A, Manzoor N (2015) Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm Biol 53(10):1496–1504. https://doi.org/10.3109/13880209.2014.989623
doi: 10.3109/13880209.2014.989623 pubmed: 25853964
Pemmaraju SC, Pruthi PA, Prasad R, Pruthi V (2013) Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian J Exp Biol 51(11):1032–1037
pubmed: 24416942
Suchodolski J, Feder-Kubis J, Krasowska A (2017) Antifungal activity of ionic liquids based on (–)-menthol: a mechanism study. Microbiol Res 197:56–64. https://doi.org/10.1016/j.micres.2016.12.008
doi: 10.1016/j.micres.2016.12.008 pubmed: 28219526
Shaban S, Patel M, Ahmad A (2020) Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris. Sci Rep 10(1):1162. https://doi.org/10.1038/s41598-020-58203-3
doi: 10.1038/s41598-020-58203-3 pubmed: 31980703 pmcid: 6981193
Silva F, Ferreira S, Duartea A, Mendonc DI, Domingues FC (2011) Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 19(1):42–47. https://doi.org/10.1016/j.phymed.2011.06.033
doi: 10.1016/j.phymed.2011.06.033 pubmed: 21788125
Saiprom N, Wongsuk T, Oonanant W, Sukphopetch P, Chantratita N, Boonsilp S (2023) Characterization of virulence factors in Candida species causing candidemia in a tertiary care hospital in Bangkok, Thailand. J Fungi 9(3):353. https://doi.org/10.3390/jof9030353
doi: 10.3390/jof9030353
Yang LF, Liu X, Lv LL, Ma ZM, Feng XC, Ma TH (2018) Dracorhodin perchlorate inhibits biofilm formation and virulence factors of Candida albicans. J Mycol Med 28(1):36–44. https://doi.org/10.1016/j.mycmed.2017.12.011
doi: 10.1016/j.mycmed.2017.12.011 pubmed: 29477784
Janeczko M, Kochanowicz E, Górka K, Skrzypek T (2024) Quinalizarin as a potential antifungal drug for the treatment of Candida albicans fungal infection in cancer patients. Microbiol Spectr 12(3):e0365223. https://doi.org/10.1128/spectrum.03652-23
doi: 10.1128/spectrum.03652-23 pubmed: 38289929
Wang H, Li H, Liu Z, Zhu Z, Cao Y (2024) Activity of thonningianin A against Candida albicans in vitro and in vivo. Appl Microbiol Biotechnol 108(1):96. https://doi.org/10.1007/s00253-023-12996-1
doi: 10.1007/s00253-023-12996-1 pubmed: 38212967 pmcid: 10784352
Mesa-Arango AC, Trevijano-Contador N, Román E, Sánchez-Fresneda R, Casas C, Herrero E et al (2014) The production of reactive oxygen species is a universal action mechanism of Amphotericin B against pathogenic yeasts and contributes to the fungicidal effect of this drug. Antimicrob Agents Chemother 58(11):6627–6638. https://doi.org/10.1128/AAC.03570-14
doi: 10.1128/AAC.03570-14 pubmed: 25155595 pmcid: 4249417
Kebaara BW, Langford ML, Navarathna DH, Dumitru, Nickerson KW, Atkin AL (2008) Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot cell 7(6):980–987. https://doi.org/10.1128/EC.00357-07
doi: 10.1128/EC.00357-07 pubmed: 18424510 pmcid: 2446655
Balasaheb Patil S, Khanderao Jadhav A, Kumar Sharma R, Tushar Basrani S, Chandsaheb Gavandi T, Ashok Chougule S et al (2023) Antifungal activity of allyl isothiocyanate by targeting signal transduction pathway, ergosterol biosynthesis, and cell cycle in Candida albicans. Curr Med Mycol 9(2):29–38. https://doi.org/10.22034/CMM.2023.345081.1429
doi: 10.22034/CMM.2023.345081.1429 pubmed: 38375521 pmcid: 10874482
Bui LN, Iosue CL, Wykoff DD (2022) Tup1 paralog CgTUP11 is a stronger repressor of transcription than CgTUP1 in Candida glabrata. mSphere 7(2):e0076521. https://doi.org/10.1128/msphere.00765-21
doi: 10.1128/msphere.00765-21 pubmed: 35341317
Weber K, Sohr R, Schulz B, Fleischhacker M, Ruhnke M (2009) Secretion of E,E-farnesol and biofilm formation in eight different Candida species. Antimicrob Agents Chemother 53(2):848. https://doi.org/10.1128/AAC.01646-07
doi: 10.1128/AAC.01646-07 pmcid: 2630660
Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y et al (2005) cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother 49(2):584-9. https://doi.org/10.1128/AAC.49.2.584-589.2005

Auteurs

Pouria Khodavandi (P)

Department of Animal Science, Shiraz University, Shiraz, Iran.

Maryam Miri Soogh (MM)

Department of Microbiology, Yasuj Branch, Islamic Azad University, Yasuj, Iran.

Fahimeh Alizadeh (F)

Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

Alireza Khodavandi (A)

Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran. alireza_khodavandi@yahoo.com.

Sadegh Nouripour-Sisakht (S)

Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.

Articles similaires

Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Female Biofilms Animals Lactobacillus Mice
Neoplastic Stem Cells Animals Humans Aldehyde Dehydrogenase Tretinoin

Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents.

Doris Crnčević, Alma Ramić, Andreja Radman Kastelic et al.
1.00
Humans Microbial Sensitivity Tests Anti-Bacterial Agents Biofilms Quinuclidines

Classifications MeSH