Assessment of the effects of mimicking tissue microstructural properties on apparent diffusion coefficient and apparent exchange rate in diffusion MRI via a series of specially designed phantoms.

AXR axial ADC diffusion MRI physical phantom radial ADC tissue microstructural property

Journal

Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245

Informations de publication

Date de publication:
01 2022
Historique:
revised: 04 08 2021
received: 15 03 2021
accepted: 09 08 2021
pubmed: 27 8 2021
medline: 1 2 2022
entrez: 26 8 2021
Statut: ppublish

Résumé

Diffusion MRI provides a valuable tool for imaging tissue microstructure. However, due to the lack of related experimental methods and specially designed phantoms, no experimental study has been conducted yet to quantitatively assess the effects of membrane permeability, intracellular volume fraction (IVF), and intracellular diffusivity on the apparent diffusion coefficient (ADC) obtained from diffusion weighted imaging (DWI), and the effects of membrane permeability on the apparent exchange rate (AXR) obtained from filter exchange imaging (FEXI). A series of phantoms with three adjustable parameters was designed to mimic tissue microstructural properties including membrane permeability, IVF, and intracellular diffusivity. Quantitative experiments were conducted to assess the effects of these properties on ADC and AXR. DWI scans were performed to obtain axial and radial ADC values. FEXI scans were performed to obtain AXR values. Axial ADC values range from 1.148 μm The proposed phantoms can quantitatively evaluate the effects of mimicking tissue microstructural properties on ADC and AXR. This new phantom design provides a potential method for further understanding the biophysical mechanisms underlying the change in ADC and diffusion exchange.

Identifiants

pubmed: 34435698
doi: 10.1002/mrm.28990
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

292-301

Informations de copyright

© 2021 International Society for Magnetic Resonance in Medicine.

Références

Alexander DC, Dyrby TB, Nilsson M, Zhang H. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. 2019;32:e3841.
Takata K, Matsuzaki T, Tajika Y. Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cyto. 2004;39:1-83.
Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med. 1990;14:330-346.
Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke. 1992;23:746-754.
Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995;37:231-241.
Anderson AW, Zhong J, Petroff OAC, et al. Effects of osmotically driven cell volume changes on diffusion-weighted imaging of the rat optic nerve. Magn Reson Med. 1996;35:162-167.
Neil JJ, Duong TQ, Ackerman JJH. Evaluation of intracellular diffusion in normal and globally-ischemic rat brain via 133Cs NMR. Magn Reson Med. 1996;35:329-335.
Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D. Apparent exchange rate mapping with diffusion MRI. Magn Reson Med. 2011;66:356-365.
Hu J, Verkman AS, Hu J, Verkman AS. Increased migration and metastatic potential of tumor cells expressing aquaporin water channels. FASEB J. 2006;20:1892-1894.
Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the brain: role of aquaporins. Trends Neurosci. 2008;31:37-43.
Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22:778-784.
Latour LL, Svoboda K, Mitra PP, Sotak CH. Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci USA. 1994;91:1229-1233.
Szafer A, Zhong JH, Gore JC. Theoretical model for water diffusion in tissues. Magn Reson Med. 1995;33:697-712.
Syková E, Svoboda J, Polák J, Chvátal A. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J Cereb Blood Flow Metab. 1994;14:301-311.
van der Toorn A, Syková E, Dijkhuizen RM, et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med. 1996;36:52-60.
Harkins KD, Galons JP, Secomb TW, Trouard TP. Assessment of the effects of cellular tissue properties on ADC measurements by numerical simulation of water diffusion. Magn Reson Med. 2009;62:1414-1422.
Wagner F, Laun FB, Kuder TA, et al. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms. PLoS One. 2017;12:e0179276.
Wang XK, Reeder SB, Hernando D. An acetone-based phantom for quantitative diffusion MRI. J Magn Reson Imaging. 2017;46:1683-1692.
Gatidis S, Schmidt H, Martirosian P, Schwenzer NF. Development of an MRI phantom for diffusion-weighted imaging with independent adjustment of apparent diffusion coefficient values and T2 relaxation times. Magn Reson Med. 2014;72:459-463.
Lavdas I, Behan KC, Papadaki A, McRobbie DW, Aboagye EO. A phantom for diffusion-weighted MRI (DW-MRI). J Magn Reson Imaging. 2013;38:173-179.
Grech-Sollars M, Zhou FL, Waldman AD, Parker GJM, Cristinacce PLH. Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences. Neuroimage. 2018;181:395-402.
Hubbard PL, Zhou FL, Eichhorn SJ, Parker GJM. Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magn Reson Med. 2015;73:299-305.
Guise C, Fernandes MM, Nobrega JM, Pathak S, Schneider W, Fangueiro R. Hollow polypropylene yarns as a biomimetic brain phantom for the validation of high-definition fiber tractography imaging. ACS Appl Mater Interfaces. 2016;8:29960-29967.
Bach M, Fritzsche KH, Stieltjes B, Laun FB. Investigation of resolution effects using a specialized diffusion tensor phantom. Magn Reson Med. 2014;71:1108-1116.
Papaioannou A, Novikov DS, Fieremans E, Boutis GS. Observation of structural universality in disordered systems using bulk diffusion measurement. Phys Rev E. 2017;96:061101.
Zhao C, Yu B, Qian B, Wei Q, Yang K, Zhang A. BPA transfer rate increase using molecular imprinted polyethersulfone hollow fiber membrane. J Membrane Sci. 2008;310:38-43.
Novikov DS, Veraart J, Jelescu IO, Fieremans E. Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. Neuroimage. 2018;174:518-538.
Veraart J, Novikov DS, Fieremans E. TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T2 relaxation times. Neuroimage. 2018;182:360-369.
Nezamzadeh M. Diffusion time dependence of magnetic resonance diffusion signal decays: an investigation of water exchange in human brain in vivo. Magn Reson Mater Phy Biol Med. 2012;25:285-296.
Helenius J, Soinne L, Perkiö J, et al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol. 2002;23:194-199.
Ford JC, Hackney DB, Lavi E, Phillips M, Patel U. Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J Magn Reson Imaging. 1998;8:775-782.
Vestergaard-Poulsen P, Hansen B, Østergaard L, Jakobsen R. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI. J Magn Reson Imaging. 2007;26:529-540.
Van Pul C, Jennekens W, Nicolay K, Kopinga K, Wijn PFF. Ischemia-induced ADC changes are larger than osmotically-induced ADC changes in a neonatal rat hippocampus model. Magn Reson Med. 2005;53:348-355.
Silva MD, Omae T, Helmer KG, Li FH, Fisher M, Sotak CH. Separating changes in the intra- and extracellular water apparent diffusion coefficient following focal cerebral ischemia in the rat brain. Magn Reson Med. 2002;48:826-837.
Duong TQ, Ackerman JJH, Ying HS, Neil JJ. Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn Reson Med. 1998;40:1-13.
Galvosas P, Qiao Y, Schönhoff M, Callaghan PT. On the use of 2D correlation and exchange NMR spectroscopy in organic porous materials. Magn Reson Imaging. 2007;25:497-500.
Breen-Norris JO, Siow B, Walsh C, et al. Measuring diffusion exchange across the cell membrane with DEXSY (Diffusion Exchange Spectroscopy). Magn Reson Med. 2020;84:1543-1551.
Lasič S, Åslund I, Topgaard D. Fast MRI for spatially resolved quantitative information on molecular exchange. Diffusion Fundamentals. 2009;120:4038.
Kärger J, Pfeifer H, Heink W. Principles and application of self-diffusion measurements by nuclear magnetic resonance. In: Waugh J, ed. Advances in Magnetic Resonance. New York: Academic Press; 1988:1-89.
Pierpaoli C, Sarlls J, Nevo U, Basser PJ, Horkay F. Polyvinylpyrrolidone (PVP) water solutions as isotropic phantoms for diffusion MRI studies. In: Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, HI, 2009, p. 1414.
Budde MD, Frank JA. Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci USA. 2010;107:14472-14477.

Auteurs

Xiaodong Li (X)

Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.

Yafei Bai (Y)

Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.

Yupeng Liao (Y)

Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.

Sherman Xuegang Xin (SX)

Laboratory of Biophysics, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.

Articles similaires

Humans Magnetic Resonance Imaging Phantoms, Imaging Infant, Newborn Signal-To-Noise Ratio
Humans Phantoms, Imaging Radiography Patient Positioning Radiology
Humans Female Breast Neoplasms Deep Learning Diffusion Magnetic Resonance Imaging
Deep Learning Humans Microvessels Ultrasonography Phantoms, Imaging

Classifications MeSH