Antagonistic Interaction between Histone Deacetylase Inhibitor: Cambinol and Cisplatin-An Isobolographic Analysis in Breast Cancer In Vitro Models.
Apoptosis
/ drug effects
Breast Neoplasms
/ drug therapy
Cell Cycle
/ drug effects
Cisplatin
/ antagonists & inhibitors
Drug Antagonism
Female
Histone Deacetylase Inhibitors
/ pharmacology
Humans
MCF-7 Cells
Models, Biological
Naphthalenes
/ antagonists & inhibitors
Pyrimidinones
/ antagonists & inhibitors
CDDP
cambinol
combined therapy
histone deacetylase inhibitors
isobolographic analysis
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
09 Aug 2021
09 Aug 2021
Historique:
received:
29
06
2021
revised:
31
07
2021
accepted:
06
08
2021
entrez:
27
8
2021
pubmed:
28
8
2021
medline:
16
9
2021
Statut:
epublish
Résumé
Breast cancer (BC) is the leading cause of death in women all over the world. Currently, combined chemotherapy with two or more agents is considered a promising anti-cancer tool to achieve better therapeutic response and to reduce therapy-related side effects. In our study, we demonstrated an antagonistic effect of cytostatic agent-cisplatin (CDDP) and histone deacetylase inhibitor: cambinol (CAM) for breast cancer cell lines with different phenotypes: estrogen receptor positive (MCF7, T47D) and triple negative (MDA-MB-231, MDA-MB-468). The type of pharmacological interaction was assessed by an isobolographic analysis. Our results showed that both agents used separately induced cell apoptosis; however, applying them in combination ameliorated antiproliferative effect for all BC cell lines indicating antagonistic interaction. Cell cycle analysis showed that CAM abolished cell cycle arrest in S phase, which was induced by CDDP. Additionally, CAM increased cell proliferation compared to CDDP used alone. Our data indicate that CAM and CDDP used in combination produce antagonistic interaction, which could inhibit anti-cancer treatment efficacy, showing importance of preclinical testing.
Identifiants
pubmed: 34445277
pii: ijms22168573
doi: 10.3390/ijms22168573
pmc: PMC8395248
pii:
doi:
Substances chimiques
Histone Deacetylase Inhibitors
0
Naphthalenes
0
Pyrimidinones
0
cambinol
0
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Medical University of Lublin
ID : DS440/2020 and DS440/2021-2022
Organisme : The Iwanowska Programme, The Polish National Agency for Academic Exchange
ID : PPN/IWA/2018/1/00005 and PPN/IWA/2019/1/00160
Références
Biofactors. 2012 Sep-Oct;38(5):349-59
pubmed: 22730114
Cell Cycle. 2019 Sep;18(18):2164-2196
pubmed: 31251117
Semin Cancer Biol. 2019 Aug;57:59-71
pubmed: 30453040
Nat Biotechnol. 2012 Jul 10;30(7):679-92
pubmed: 22781697
Science. 2017 Aug 18;357(6352):
pubmed: 28818916
Int J Mol Sci. 2019 Jun 28;20(13):
pubmed: 31261609
Ann N Y Acad Sci. 2015 Sep;1350:1-16
pubmed: 26375862
Expert Opin Investig Drugs. 2017 Nov;26(11):1199-1206
pubmed: 28952409
Int J Mol Sci. 2017 Jul 01;18(7):
pubmed: 28671573
Cancers (Basel). 2020 Nov 26;12(12):
pubmed: 33256070
Molecules. 2020 Jan 21;25(3):
pubmed: 31973227
Curr Top Med Chem. 2018;18(28):2420-2428
pubmed: 30526462
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E170-9
pubmed: 23251029
Target Oncol. 2021 May;16(3):255-282
pubmed: 33710534
Chonnam Med J. 2016 Jan;52(1):1-11
pubmed: 26865995
J Pharmacol Exp Ther. 2006 Oct;319(1):1-7
pubmed: 16670349
J Pharmacol Exp Ther. 1949 Jun;96(2):99-113
pubmed: 18152921
Mod Pathol. 2016 May;29(5):476-88
pubmed: 26939876
BMC Cancer. 2011 Apr 18;11:143
pubmed: 21501481
Eur J Pharmacol. 2021 Feb 5;892:173736
pubmed: 33220273
Mol Med Rep. 2018 Nov;18(5):4381-4387
pubmed: 30221734
Mol Cancer Ther. 2013 Apr;12(4):499-508
pubmed: 23339189
Protein J. 2011 Oct;30(7):499-508
pubmed: 21947960
Cell. 2017 Dec 14;171(7):1678-1691.e13
pubmed: 29245013
Nature. 2019 Nov;575(7782):299-309
pubmed: 31723286
Int J Mol Sci. 2019 Jul 26;20(15):
pubmed: 31357442
CA Cancer J Clin. 2019 Jan;69(1):7-34
pubmed: 30620402
Lancet. 2011 Nov 19;378(9805):1812-23
pubmed: 22098854
Am J Cancer Res. 2016 Dec 01;6(12):2831-2845
pubmed: 28042503
Front Oncol. 2020 Jan 17;9:1516
pubmed: 32010617
Dalton Trans. 2018 May 15;47(19):6645-6653
pubmed: 29632935
Oncotarget. 2017 Jun 6;8(23):38022-38043
pubmed: 28410237
Clin Epigenetics. 2016 May 25;8:61
pubmed: 27226812
Nat Chem Biol. 2020 Jul;16(7):791-800
pubmed: 32251407
Curr Protoc Pharmacol. 2016 Mar 18;72:9.19.1-9.19.19
pubmed: 26995550
PLoS One. 2012;7(3):e33433
pubmed: 22479397
Oncogene. 2020 Jan;39(4):922-934
pubmed: 31576013
Oncol Lett. 2021 Apr;21(4):306
pubmed: 33732382
Cancer Cell. 2012 Feb 14;21(2):266-81
pubmed: 22340598
Toxicol Lett. 2018 Jun 1;289:63-74
pubmed: 29545174
PLoS One. 2015 Nov 18;10(11):e0143013
pubmed: 26580554
Int J Cancer. 2020 Dec 15;147(12):3297-3304
pubmed: 32449165
PLoS One. 2009 Jul 03;4(7):e6146
pubmed: 19582160
Clin Exp Nephrol. 2011 Jun;15(3):363-372
pubmed: 21416250
Int J Mol Sci. 2019 Mar 07;20(5):
pubmed: 30866433
Biochem Biophys Res Commun. 2020 Dec 17;533(4):853-860
pubmed: 33008601
Naunyn Schmiedebergs Arch Pharmacol. 2007 Apr;375(2):105-14
pubmed: 17333129
PLoS Genet. 2011 Jun;7(6):e1002135
pubmed: 21698133
Expert Rev Anticancer Ther. 2019 Feb;19(2):177-189
pubmed: 30575405
Cancer Res. 2006 Apr 15;66(8):4368-77
pubmed: 16618762
Cancer Sci. 2010 May;101(5):1177-85
pubmed: 20210796
Signal Transduct Target Ther. 2019 Dec 17;4:62
pubmed: 31871779
Cancers (Basel). 2014 Sep 05;6(3):1769-92
pubmed: 25198391
Pharmacol Ther. 2007 Jan;113(1):197-209
pubmed: 17079019
Ai Zheng. 2009 Dec;28(12):1270-6
pubmed: 19958621
Oncogene. 2012 Apr 12;31(15):1869-83
pubmed: 21892204
Trends Pharmacol Sci. 2017 May;38(5):459-472
pubmed: 28389129
Cell Physiol Biochem. 2020 Jul 4;54(4):648-664
pubmed: 32619350
Eur J Pharmacol. 2014 Oct 5;740:364-78
pubmed: 25058905
J Pediatr Surg. 2012 Jun;47(6):1267-71
pubmed: 22703804
Asian Pac J Cancer Prev. ;18(8):2243-2247
pubmed: 28843263