Characterization of the Role of Rab18 in Mediating LD-ER Contact and LD Growth.
APEX-tag
Lipid droplets
Lipid metabolism
Membrane contact site
Rab GTPase
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
28
8
2021
pubmed:
29
8
2021
medline:
14
1
2022
Statut:
ppublish
Résumé
Lipid droplets (LDs) are dynamic cellular organelles found in most eukaryotic cells. Lipid incorporation from endoplasmic reticulum (ER) to LD is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link that mediates ER and LD cross talk remains elusive. Here, we describe the methodology used to characterize the function of Rab18 in regulating LD homeostasis and LD-ER contact. First, we focus on the quantitative assay used to measure intracellular LDs morphological changes. This is followed by a detailed description of the use of the APEX-label technology in combination with electron microscope (EM) to visualize ER-LD contact sites. These assays are valuable for the investigation of LD-associated proteins such as Rab18 in establishing membrane contact sites between LDs and other subcellular organelles.
Identifiants
pubmed: 34453721
doi: 10.1007/978-1-0716-1346-7_16
doi:
Substances chimiques
rab GTP-Binding Proteins
EC 3.6.5.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
229-241Informations de copyright
© 2021. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Herker E, Harris C, Hernandez C et al (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16(11):1295–1298. https://doi.org/10.1038/nm.2238
doi: 10.1038/nm.2238
pubmed: 20935628
pmcid: 3431199
Li Z, Thiel K, Thul Peter J et al (2012) Lipid droplets control the maternal histone supply of drosophila embryos. Curr Biol 22(22):2104–2113. https://doi.org/10.1016/j.cub.2012.09.018
doi: 10.1016/j.cub.2012.09.018
pubmed: 23084995
pmcid: 3513403
Klemm EJ, Spooner E, Ploegh HL (2011) Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J Biol Chem 286(43):37602–37614. https://doi.org/10.1074/jbc.M111.284794
doi: 10.1074/jbc.M111.284794
pubmed: 21857022
pmcid: 3199505
Anand P, Cermelli S, Li Z et al (2012) A novel role for lipid droplets in the organismal antibacterial response. eLife 1:e00003. https://doi.org/10.7554/eLife.00003
doi: 10.7554/eLife.00003
pubmed: 23150794
pmcid: 3491588
Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5):373–378. https://doi.org/10.1038/nrm1912
doi: 10.1038/nrm1912
pubmed: 16550215
Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430
doi: 10.1146/annurev-biochem-061009-102430
pubmed: 22524315
pmcid: 3767414
Gross DA, Silver DL (2014) Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 49(4):304–326. https://doi.org/10.3109/10409238.2014.931337
doi: 10.3109/10409238.2014.931337
pubmed: 25039762
Krahmer N, Farese RV, Walther TC (2013) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5(7):973–983. https://doi.org/10.1002/emmm.201100671
doi: 10.1002/emmm.201100671
pubmed: 23740690
Gong J, Sun Z, Li P (2009) CIDE proteins and metabolic disorders. Curr Opin Lipidol 20(2):121–126. https://doi.org/10.1097/MOL.0b013e328328d0bb
doi: 10.1097/MOL.0b013e328328d0bb
pubmed: 19276890
Xu L, Zhou L, Li P (2012) CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 32(5):1094–1098. https://doi.org/10.1161/ATVBAHA.111.241489
doi: 10.1161/ATVBAHA.111.241489
pubmed: 22517368
Wilfling F, Haas JT, Walther TC et al (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45. https://doi.org/10.1016/j.ceb.2014.03.008
doi: 10.1016/j.ceb.2014.03.008
pubmed: 24736091
pmcid: 4526149
Pol A, Gross SP, Parton RG (2014) Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204(5):635–646. https://doi.org/10.1083/jcb.201311051
doi: 10.1083/jcb.201311051
pubmed: 24590170
pmcid: 3941045
Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24(3):109–115
doi: 10.1016/S0968-0004(98)01349-8
Jacquier N, Choudhary V, Mari M et al (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124(Pt 14):2424–2437. https://doi.org/10.1242/jcs.076836
doi: 10.1242/jcs.076836
pubmed: 21693588
Ohsaki Y, Cheng J, Suzuki M et al (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121(Pt 14):2415–2422. https://doi.org/10.1242/jcs.025452
doi: 10.1242/jcs.025452
pubmed: 18577578
Wilfling F, Wang H, Haas JT et al (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24(4):384–399. https://doi.org/10.1016/j.devcel.2013.01.013
doi: 10.1016/j.devcel.2013.01.013
pubmed: 23415954
pmcid: 3727400
Krahmer N, Guo Y, Wilfling F et al (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14(4):504–515. https://doi.org/10.1016/j.cmet.2011.07.013
doi: 10.1016/j.cmet.2011.07.013
pubmed: 21982710
pmcid: 3735358
Fujimoto Y, Itabe H, Kinoshita T et al (2007) Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res 48(6):1280–1292. https://doi.org/10.1194/jlr.M700050-JLR200
doi: 10.1194/jlr.M700050-JLR200
pubmed: 17379924
Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9(3):338–352. https://doi.org/10.1111/j.1600-0854.2007.00689.x
doi: 10.1111/j.1600-0854.2007.00689.x
pubmed: 18088320
Gong J, Sun Z, Wu L et al (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195(6):953–963. https://doi.org/10.1083/jcb.201104142
doi: 10.1083/jcb.201104142
pubmed: 22144693
pmcid: 3241734
Xu W, Wu L, Yu M et al (2016) Differential roles of cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem 291(9):4282–4293. https://doi.org/10.1074/jbc.M115.701094
doi: 10.1074/jbc.M115.701094
pubmed: 26733203
pmcid: 4813457
Wu L, Zhou L, Chen C et al (2014) Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci China Life Sci 57(1):107–116. https://doi.org/10.1007/s11427-013-4585-y
doi: 10.1007/s11427-013-4585-y
pubmed: 24369348
Zhang S, Shui G, Wang G et al (2014) Cidea control of lipid storage and secretion in mouse and human sebaceous glands. Mol Cell Biol 34(10):1827–1838. https://doi.org/10.1128/MCB.01723-13
doi: 10.1128/MCB.01723-13
pubmed: 24636991
pmcid: 4019032
Wang W, Lv N, Zhang S et al (2012) Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 18(2):235–243. https://doi.org/10.1038/nm.2614
doi: 10.1038/nm.2614
pubmed: 22245780
Zhou L, Xu L, Ye J et al (2012) Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 56(1):95–107. https://doi.org/10.1002/hep.25611
doi: 10.1002/hep.25611
pubmed: 22278400
Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117. https://doi.org/10.1038/35052055
doi: 10.1038/35052055
pubmed: 11252952
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525. https://doi.org/10.1038/nrm2728
doi: 10.1038/nrm2728
pubmed: 19603039
Ozeki S, Cheng JL, Tauchi-Sato K et al (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(12):2601–2611. https://doi.org/10.1242/jcs.02401
doi: 10.1242/jcs.02401
pubmed: 15914536
Salloum S, Wang H, Ferguson C et al (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9(8):e1003513. https://doi.org/10.1371/journal.ppat.1003513
doi: 10.1371/journal.ppat.1003513
pubmed: 23935497
pmcid: 3731246
Martin S, Driessen K, Nixon SJ et al (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280(51):42325–42335. https://doi.org/10.1074/jbc.M506651200
doi: 10.1074/jbc.M506651200
pubmed: 16207721
Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6(7):e22931. https://doi.org/10.1371/journal.pone.0022931
doi: 10.1371/journal.pone.0022931
pubmed: 21829560
pmcid: 3145781
Aligianis IA, Johnson CA, Gissen P et al (2005) Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat Genet 37(3):221–223. https://doi.org/10.1038/ng1517
doi: 10.1038/ng1517
pubmed: 15696165
Handley MT, Morris-Rosendahl DJ, Brown S et al (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum Mutat 34(5):686–696. https://doi.org/10.1002/humu.22296
doi: 10.1002/humu.22296
pubmed: 23420520
Liegel RP, Handley MT, Ronchetti A et al (2013) Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet 93(6):1001–1014. https://doi.org/10.1016/j.ajhg.2013.10.011
doi: 10.1016/j.ajhg.2013.10.011
pubmed: 24239381
pmcid: 3852926
Tagaya M, Arasaki K, Inoue H et al (2014) Moonlighting functions of the NRZ (mammalian Dsl1) complex. Front Cell Dev Biol 2:25. https://doi.org/10.3389/fcell.2014.00025
doi: 10.3389/fcell.2014.00025
pubmed: 25364732
pmcid: 4206994
Hirose H, Arasaki K, Dohmae N et al (2004) Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J 23(6):1267–1278. https://doi.org/10.1038/sj.emboj.7600135
doi: 10.1038/sj.emboj.7600135
pubmed: 15029241
pmcid: 381410
Burri L, Varlamov O, Doege CA et al (2003) A SNARE required for retrograde transport to the endoplasmic reticulum. Proc Natl Acad Sci U S A 100(17):9873–9877. https://doi.org/10.1073/pnas.1734000100
doi: 10.1073/pnas.1734000100
pubmed: 12893879
pmcid: 187870
Hatsuzawa K, Hirose H, Tani K et al (2000) Syntaxin 18, a SNAP receptor that functions in the endoplasmic reticulum, intermediate compartment, and cis-Golgi vesicle trafficking. J Biol Chem 275(18):13713–13720
doi: 10.1074/jbc.275.18.13713
Gillingham AK, Sinka R, Torres IL et al (2014) Toward a comprehensive map of the effectors of Rab GTPases. Dev Cell 31(3):358–373. https://doi.org/10.1016/j.devcel.2014.10.007
doi: 10.1016/j.devcel.2014.10.007
pubmed: 25453831
pmcid: 4232348
Xu D, Li Y, Wu L et al (2018) Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 217(3):975–995. https://doi.org/10.1083/jcb.201704184
doi: 10.1083/jcb.201704184
pubmed: 29367353
pmcid: 5839781
Li C, Luo X, Zhao S et al (2017) COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36(4):441–457. https://doi.org/10.15252/embj.201694866
doi: 10.15252/embj.201694866
pubmed: 28003315
Li D, Zhao YG, Li D et al (2019) The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. Cell Rep 27(2):343–358 e345. https://doi.org/10.1016/j.celrep.2019.03.025
doi: 10.1016/j.celrep.2019.03.025
pubmed: 30970241
Gao G, Sheng Y, Yang H et al (2019) DFCP1 associates with lipid droplets. Cell Biol Int. https://doi.org/10.1002/cbin.11199
Ariotti N, Hall TE, Rae J et al (2015) Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Dev Cell 35(4):513–525. https://doi.org/10.1016/j.devcel.2015.10.016
doi: 10.1016/j.devcel.2015.10.016
pubmed: 26585296
Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12(1):51–54. https://doi.org/10.1038/nmeth.3179
doi: 10.1038/nmeth.3179
pubmed: 25419960