Characterization of the Role of Rab18 in Mediating LD-ER Contact and LD Growth.


Journal

Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969

Informations de publication

Date de publication:
2021
Historique:
entrez: 28 8 2021
pubmed: 29 8 2021
medline: 14 1 2022
Statut: ppublish

Résumé

Lipid droplets (LDs) are dynamic cellular organelles found in most eukaryotic cells. Lipid incorporation from endoplasmic reticulum (ER) to LD is important in controlling LD growth and intracellular lipid homeostasis. However, the molecular link that mediates ER and LD cross talk remains elusive. Here, we describe the methodology used to characterize the function of Rab18 in regulating LD homeostasis and LD-ER contact. First, we focus on the quantitative assay used to measure intracellular LDs morphological changes. This is followed by a detailed description of the use of the APEX-label technology in combination with electron microscope (EM) to visualize ER-LD contact sites. These assays are valuable for the investigation of LD-associated proteins such as Rab18 in establishing membrane contact sites between LDs and other subcellular organelles.

Identifiants

pubmed: 34453721
doi: 10.1007/978-1-0716-1346-7_16
doi:

Substances chimiques

rab GTP-Binding Proteins EC 3.6.5.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

229-241

Informations de copyright

© 2021. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Herker E, Harris C, Hernandez C et al (2010) Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med 16(11):1295–1298. https://doi.org/10.1038/nm.2238
doi: 10.1038/nm.2238 pubmed: 20935628 pmcid: 3431199
Li Z, Thiel K, Thul Peter J et al (2012) Lipid droplets control the maternal histone supply of drosophila embryos. Curr Biol 22(22):2104–2113. https://doi.org/10.1016/j.cub.2012.09.018
doi: 10.1016/j.cub.2012.09.018 pubmed: 23084995 pmcid: 3513403
Klemm EJ, Spooner E, Ploegh HL (2011) Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J Biol Chem 286(43):37602–37614. https://doi.org/10.1074/jbc.M111.284794
doi: 10.1074/jbc.M111.284794 pubmed: 21857022 pmcid: 3199505
Anand P, Cermelli S, Li Z et al (2012) A novel role for lipid droplets in the organismal antibacterial response. eLife 1:e00003. https://doi.org/10.7554/eLife.00003
doi: 10.7554/eLife.00003 pubmed: 23150794 pmcid: 3491588
Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7(5):373–378. https://doi.org/10.1038/nrm1912
doi: 10.1038/nrm1912 pubmed: 16550215
Walther TC, Farese RV Jr (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430
doi: 10.1146/annurev-biochem-061009-102430 pubmed: 22524315 pmcid: 3767414
Gross DA, Silver DL (2014) Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 49(4):304–326. https://doi.org/10.3109/10409238.2014.931337
doi: 10.3109/10409238.2014.931337 pubmed: 25039762
Krahmer N, Farese RV, Walther TC (2013) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5(7):973–983. https://doi.org/10.1002/emmm.201100671
doi: 10.1002/emmm.201100671 pubmed: 23740690
Gong J, Sun Z, Li P (2009) CIDE proteins and metabolic disorders. Curr Opin Lipidol 20(2):121–126. https://doi.org/10.1097/MOL.0b013e328328d0bb
doi: 10.1097/MOL.0b013e328328d0bb pubmed: 19276890
Xu L, Zhou L, Li P (2012) CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 32(5):1094–1098. https://doi.org/10.1161/ATVBAHA.111.241489
doi: 10.1161/ATVBAHA.111.241489 pubmed: 22517368
Wilfling F, Haas JT, Walther TC et al (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45. https://doi.org/10.1016/j.ceb.2014.03.008
doi: 10.1016/j.ceb.2014.03.008 pubmed: 24736091 pmcid: 4526149
Pol A, Gross SP, Parton RG (2014) Review: biogenesis of the multifunctional lipid droplet: lipids, proteins, and sites. J Cell Biol 204(5):635–646. https://doi.org/10.1083/jcb.201311051
doi: 10.1083/jcb.201311051 pubmed: 24590170 pmcid: 3941045
Murphy DJ, Vance J (1999) Mechanisms of lipid-body formation. Trends Biochem Sci 24(3):109–115
doi: 10.1016/S0968-0004(98)01349-8
Jacquier N, Choudhary V, Mari M et al (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124(Pt 14):2424–2437. https://doi.org/10.1242/jcs.076836
doi: 10.1242/jcs.076836 pubmed: 21693588
Ohsaki Y, Cheng J, Suzuki M et al (2008) Lipid droplets are arrested in the ER membrane by tight binding of lipidated apolipoprotein B-100. J Cell Sci 121(Pt 14):2415–2422. https://doi.org/10.1242/jcs.025452
doi: 10.1242/jcs.025452 pubmed: 18577578
Wilfling F, Wang H, Haas JT et al (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24(4):384–399. https://doi.org/10.1016/j.devcel.2013.01.013
doi: 10.1016/j.devcel.2013.01.013 pubmed: 23415954 pmcid: 3727400
Krahmer N, Guo Y, Wilfling F et al (2011) Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 14(4):504–515. https://doi.org/10.1016/j.cmet.2011.07.013
doi: 10.1016/j.cmet.2011.07.013 pubmed: 21982710 pmcid: 3735358
Fujimoto Y, Itabe H, Kinoshita T et al (2007) Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res 48(6):1280–1292. https://doi.org/10.1194/jlr.M700050-JLR200
doi: 10.1194/jlr.M700050-JLR200 pubmed: 17379924
Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic 9(3):338–352. https://doi.org/10.1111/j.1600-0854.2007.00689.x
doi: 10.1111/j.1600-0854.2007.00689.x pubmed: 18088320
Gong J, Sun Z, Wu L et al (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195(6):953–963. https://doi.org/10.1083/jcb.201104142
doi: 10.1083/jcb.201104142 pubmed: 22144693 pmcid: 3241734
Xu W, Wu L, Yu M et al (2016) Differential roles of cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) proteins in promoting lipid droplet fusion and growth in subpopulations of hepatocytes. J Biol Chem 291(9):4282–4293. https://doi.org/10.1074/jbc.M115.701094
doi: 10.1074/jbc.M115.701094 pubmed: 26733203 pmcid: 4813457
Wu L, Zhou L, Chen C et al (2014) Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Sci China Life Sci 57(1):107–116. https://doi.org/10.1007/s11427-013-4585-y
doi: 10.1007/s11427-013-4585-y pubmed: 24369348
Zhang S, Shui G, Wang G et al (2014) Cidea control of lipid storage and secretion in mouse and human sebaceous glands. Mol Cell Biol 34(10):1827–1838. https://doi.org/10.1128/MCB.01723-13
doi: 10.1128/MCB.01723-13 pubmed: 24636991 pmcid: 4019032
Wang W, Lv N, Zhang S et al (2012) Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 18(2):235–243. https://doi.org/10.1038/nm.2614
doi: 10.1038/nm.2614 pubmed: 22245780
Zhou L, Xu L, Ye J et al (2012) Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 56(1):95–107. https://doi.org/10.1002/hep.25611
doi: 10.1002/hep.25611 pubmed: 22278400
Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117. https://doi.org/10.1038/35052055
doi: 10.1038/35052055 pubmed: 11252952
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525. https://doi.org/10.1038/nrm2728
doi: 10.1038/nrm2728 pubmed: 19603039
Ozeki S, Cheng JL, Tauchi-Sato K et al (2005) Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 118(12):2601–2611. https://doi.org/10.1242/jcs.02401
doi: 10.1242/jcs.02401 pubmed: 15914536
Salloum S, Wang H, Ferguson C et al (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9(8):e1003513. https://doi.org/10.1371/journal.ppat.1003513
doi: 10.1371/journal.ppat.1003513 pubmed: 23935497 pmcid: 3731246
Martin S, Driessen K, Nixon SJ et al (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280(51):42325–42335. https://doi.org/10.1074/jbc.M506651200
doi: 10.1074/jbc.M506651200 pubmed: 16207721
Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6(7):e22931. https://doi.org/10.1371/journal.pone.0022931
doi: 10.1371/journal.pone.0022931 pubmed: 21829560 pmcid: 3145781
Aligianis IA, Johnson CA, Gissen P et al (2005) Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat Genet 37(3):221–223. https://doi.org/10.1038/ng1517
doi: 10.1038/ng1517 pubmed: 15696165
Handley MT, Morris-Rosendahl DJ, Brown S et al (2013) Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in Warburg micro syndrome and Martsolf syndrome. Hum Mutat 34(5):686–696. https://doi.org/10.1002/humu.22296
doi: 10.1002/humu.22296 pubmed: 23420520
Liegel RP, Handley MT, Ronchetti A et al (2013) Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am J Hum Genet 93(6):1001–1014. https://doi.org/10.1016/j.ajhg.2013.10.011
doi: 10.1016/j.ajhg.2013.10.011 pubmed: 24239381 pmcid: 3852926
Tagaya M, Arasaki K, Inoue H et al (2014) Moonlighting functions of the NRZ (mammalian Dsl1) complex. Front Cell Dev Biol 2:25. https://doi.org/10.3389/fcell.2014.00025
doi: 10.3389/fcell.2014.00025 pubmed: 25364732 pmcid: 4206994
Hirose H, Arasaki K, Dohmae N et al (2004) Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. EMBO J 23(6):1267–1278. https://doi.org/10.1038/sj.emboj.7600135
doi: 10.1038/sj.emboj.7600135 pubmed: 15029241 pmcid: 381410
Burri L, Varlamov O, Doege CA et al (2003) A SNARE required for retrograde transport to the endoplasmic reticulum. Proc Natl Acad Sci U S A 100(17):9873–9877. https://doi.org/10.1073/pnas.1734000100
doi: 10.1073/pnas.1734000100 pubmed: 12893879 pmcid: 187870
Hatsuzawa K, Hirose H, Tani K et al (2000) Syntaxin 18, a SNAP receptor that functions in the endoplasmic reticulum, intermediate compartment, and cis-Golgi vesicle trafficking. J Biol Chem 275(18):13713–13720
doi: 10.1074/jbc.275.18.13713
Gillingham AK, Sinka R, Torres IL et al (2014) Toward a comprehensive map of the effectors of Rab GTPases. Dev Cell 31(3):358–373. https://doi.org/10.1016/j.devcel.2014.10.007
doi: 10.1016/j.devcel.2014.10.007 pubmed: 25453831 pmcid: 4232348
Xu D, Li Y, Wu L et al (2018) Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 217(3):975–995. https://doi.org/10.1083/jcb.201704184
doi: 10.1083/jcb.201704184 pubmed: 29367353 pmcid: 5839781
Li C, Luo X, Zhao S et al (2017) COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J 36(4):441–457. https://doi.org/10.15252/embj.201694866
doi: 10.15252/embj.201694866 pubmed: 28003315
Li D, Zhao YG, Li D et al (2019) The ER-localized protein DFCP1 modulates ER-lipid droplet contact formation. Cell Rep 27(2):343–358 e345. https://doi.org/10.1016/j.celrep.2019.03.025
doi: 10.1016/j.celrep.2019.03.025 pubmed: 30970241
Gao G, Sheng Y, Yang H et al (2019) DFCP1 associates with lipid droplets. Cell Biol Int. https://doi.org/10.1002/cbin.11199
Ariotti N, Hall TE, Rae J et al (2015) Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Dev Cell 35(4):513–525. https://doi.org/10.1016/j.devcel.2015.10.016
doi: 10.1016/j.devcel.2015.10.016 pubmed: 26585296
Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12(1):51–54. https://doi.org/10.1038/nmeth.3179
doi: 10.1038/nmeth.3179 pubmed: 25419960

Auteurs

Dijin Xu (D)

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.

Peng Li (P)

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.

Li Xu (L)

State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China. xulilulu@tsinghua.edu.cn.

Articles similaires

Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Humans Arthritis, Rheumatoid Lipid Metabolism Male Female
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Classifications MeSH