Cytogenetic and molecular abnormalities in Waldenström's macroglobulinemia patients: Correlations and prognostic impact.


Journal

American journal of hematology
ISSN: 1096-8652
Titre abrégé: Am J Hematol
Pays: United States
ID NLM: 7610369

Informations de publication

Date de publication:
01 12 2021
Historique:
revised: 12 08 2021
received: 04 07 2021
accepted: 24 08 2021
pubmed: 1 9 2021
medline: 4 1 2022
entrez: 31 8 2021
Statut: ppublish

Résumé

While Waldenström macroglobulinemia (WM) is characterized by an almost unifying mutation in MYD88, clinical presentation at diagnosis and response to therapy can be widely different among WM patients. Current prognostic tools only partially address this clinical heterogeneity. Limited data compiling both molecular and cytogenetic information have been used in risk prognostication in WM. To investigate the clinical impact of genetic alterations in WM, we evaluated cytogenetic and molecular abnormalities by chromosome banding analyses, FISH and targeted NGS in a retrospective cohort of 239 WM patients, including 187 patients treated by first-line chemotherapy or immunochemotherapy. Most frequent mutations were identified in MYD88 (93%), CXCR4 (29%), MLL2 (11%), ARID1A (8%), TP53 (8%), CD79A/B (6%), TBL1XR1 (4%) and SPI1 (4%). The median number of cytogenetic abnormalities was two (range, 0-22). Main cytogenetic abnormalities were 6q deletion (del6q) (27%), trisomy 4 (tri4) (12%), tri18 (11%), del13q (11%), tri12 (7.5%) and del17p (7%). Complex karyotype (CK) was observed in 15% (n = 31) of cases, including 5% (n = 12) of highly CK (high-CK). TP53 abnormalities (TP53abn) were present in 15% of evaluable patients. TP53abn and del6q were associated with CK/high-CK (p < .05). Fifty-three percent of patients with hyperviscosity harbored CXCR4 mutations. Cytogenetic and molecular abnormalities did not significantly impact time to first treatment and response to therapy. Prognostic factors associated with shorter PFS were del6q (p = .01), TP53abn (p = .002) and high-CK (p = .01). These same factors as well as IPSSWM, tri4, CXCR4 frameshift and SPI1 mutations were significantly associated with lower OS (p < .05). These results argue for integration of both cytogenetic and molecular screening in evaluation of first-line WM patients.

Identifiants

pubmed: 34462944
doi: 10.1002/ajh.26339
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1569-1579

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390.
Morel P, Duhamel A, Gobbi P, et al. International prognostic scoring system for Waldenstrom macroglobulinemia. Blood. 2009;113(18):4163-4170.
Kastritis E, Morel P, Duhamel A, et al. A revised international prognostic score system for Waldenstrom's macroglobulinemia. Leukemia. 2019;33(11):2654-2661.
Nguyen-Khac F, Lambert J, Chapiro E, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom's macroglobulinemia. Haematologica. 2013;98(4):649-654.
Schop RF, Kuehl WM, van Wier SA, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100(8):2996-3001.
Terre C, Nguyen-Khac F, Barin C, et al. Trisomy 4, a new chromosomal abnormality in Waldenstrom's macroglobulinemia: a study of 39 cases. Leukemia. 2006;20(9):1634-1636.
Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791-2796.
Poulain S, Roumier C, Decambron A, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121(22):4504-4511.
Abeykoon JP, Paludo J, King RL, et al. MYD88 mutation status does not impact overall survival in Waldenstrom macroglobulinemia. Am J Hematol. 2018;93(2):187-194.
Treon SP, Xu L, Hunter Z. MYD88 mutations and response to Ibrutinib in Waldenstrom's macroglobulinemia. N Engl J Med. 2015;373(6):584-586.
Treon SP, Xu L, Guerrera ML, et al. Genomic landscape of Waldenstrom macroglobulinemia and its impact on treatment strategies. J Clin Oncol. 2020;38(11):1198-1208.
Poulain S, Roumier C, Bertrand E, et al. TP53 mutation and its prognostic significance in Waldenstrom's macroglobulinemia. Clin Cancer Res. 2017;23(20):6325-6335.
Roos-Weil D, Decaudin C, Armand M, et al. A recurrent activating missense mutation in Waldenstrom Macroglobulinemia affects the DNA binding of the ETS transcription factor SPI1 and enhances proliferation. Cancer Discov. 2019;9(6):796-811.
Gustine JN, Tsakmaklis N, Demos MG, et al. TP53 mutations are associated with mutated MYD88 and CXCR4, and confer an adverse outcome in Waldenstrom macroglobulinaemia. Br J Haematol. 2019;184(2):242-245.
Roos-Weil D, Giacopelli B, Armand M, et al. Identification of 2 DNA methylation subtypes of Waldenstrom macroglobulinemia with plasma and memory B-cell features. Blood. 2020;136(5):585-595.
Haferlach C, Bacher U. Cytogenetic methods in chronic lymphocytic leukemia. Methods Mol Biol. 2011;730:119-130.
Nguyen-Khac F, Borie C, Callet-Bauchu E, Eclache V, Struski S. Cytogenetics in the management of chronic lymphocytic leukemia: an update by the Groupe francophone de cytogenetique hematologique (GFCH). Ann Biol Clin. 2016;74(5):561-567.
Thompson PA, O'Brien SM, Wierda WG, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612-3621.
Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249-255.
Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205-1216.
Castillo JJ, Advani RH, Branagan AR, et al. Consensus treatment recommendations from the tenth international workshop for Waldenstrom macroglobulinaemia. Lancet Haematol. 2020;7(11):e827-e837.
Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015;372(15):1430-1440.
Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 trial of Ibrutinib plus rituximab in Waldenstrom's macroglobulinemia. N Engl J Med. 2018;378(25):2399-2410.
Treon SP, Meid K, Gustine J, et al. Long-term follow-up of Ibrutinib monotherapy in symptomatic, previously treated patients with Waldenstrom macroglobulinemia. J Clin Oncol. 2021;39(6):565-575.
Dimopoulos MA, Trotman J, Tedeschi A, et al. Ibrutinib for patients with rituximab-refractory Waldenstrom's macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241-250.
Tomowiak C, Poulain S, Herbaux C, et al. Obinutuzumab and idelalisib in symptomatic patients with relapsed/refractory Waldenstrom macroglobulinemia. Blood Adv. 2021;5(9):2438-2446.
Laribi K, Poulain S, Willems L, et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French innovative Leukaemia organization (FILO). Br J Haematol. 2019;186(1):146-149.
Damm F, Mylonas E, Cosson A, et al. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 2014;4(9):1088-1101.
Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676-1679.
Mansouri L, Sutton LA, Ljungstrom V, et al. Functional loss of IkappaBepsilon leads to NF-kappaB deregulation in aggressive chronic lymphocytic leukemia. J Exp Med. 2015;212(6):833-843.
Morin RD, Johnson NA, Severson TM, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010;42(2):181-185.
Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88-92.
Gonzalez-Aguilar A, Idbaih A, Boisselier B, et al. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res. 2012;18(19):5203-5211.
Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525-530.
Ocio EM, Schop RF, Gonzalez B, et al. 6q deletion in Waldenstrom macroglobulinemia is associated with features of adverse prognosis. Br J Haematol. 2007;136(1):80-86.
Chang H, Qi C, Trieu Y, et al. Prognostic relevance of 6q deletion in Waldenstrom's macroglobulinemia: a multicenter study. Clin Lymphoma Myeloma. 2009;9(1):36-38.
Garcia-Sanz R, Dogliotti I, Zaccaria GM, et al. 6q deletion in Waldenstrom macroglobulinaemia negatively affects time to transformation and survival. Br J Haematol. 2021;192(5):843-852.
Guerrera ML, Tsakmaklis N, Xu L, et al. MYD88 mutated and wild-type Waldenstrom's macroglobulinemia: characterization of chromosome 6q gene losses and their mutual exclusivity with mutations in CXCR4. Haematologica. 2018;103(9):e408-e411.
Wang Y, Gali VL, Xu-Monette ZY, et al. Molecular and genetic biomarkers implemented from next-generation sequencing provide treatment insights in clinical practice for Waldenstrom macroglobulinemia. Neoplasia. 2021;23(4):361-374.
Gustine JN, Xu L, Tsakmaklis N, et al. CXCR4 (S338X) clonality is an important determinant of ibrutinib outcomes in patients with Waldenstrom macroglobulinemia. Blood Adv. 2019;3(19):2800-2803.
Castillo JJ, Xu L, Gustine JN, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenstrom macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019;187(3):356-363.

Auteurs

Daphné Krzisch (D)

Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.
Centre de Recherche des Cordeliers, INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.

Nayara Guedes (N)

Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Clémentine Boccon-Gibod (C)

Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Marine Baron (M)

Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Clotilde Bravetti (C)

Sorbonne Université, Biologie moléculaire, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Frédéric Davi (F)

Sorbonne Université, Biologie moléculaire, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Marine Armand (M)

Sorbonne Université, Biologie moléculaire, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Luce Smagghe (L)

Sorbonne Université, Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Jonathan Caron (J)

Centre de Recherche des Cordeliers, INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.

Olivier A Bernard (OA)

Université Paris-Saclay, Gustave Roussy, INSERM, Villejuif, France.

Santos Susin (S)

Centre de Recherche des Cordeliers, INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.

Elise Chapiro (E)

Centre de Recherche des Cordeliers, INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.
Sorbonne Université, Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Véronique Leblond (V)

Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Florence Nguyen-Khac (F)

Centre de Recherche des Cordeliers, INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.
Sorbonne Université, Unité de Cytogénétique, Hôpital Pitié-Salpêtrière, APHP, Paris, France.

Damien Roos-Weil (D)

Sorbonne Université, Hôpital Pitié-Salpêtrière, APHP, Paris, France.
Centre de Recherche des Cordeliers, INSERM, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Sorbonne Université, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH