Light intensity and spectral composition drive reproductive success in the marine benthic diatom Seminavis robusta.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
02 09 2021
02 09 2021
Historique:
received:
08
04
2021
accepted:
09
06
2021
entrez:
3
9
2021
pubmed:
4
9
2021
medline:
22
12
2021
Statut:
epublish
Résumé
The properties of incident light play a crucial role in the mating process of diatoms, a group of ecologically important microalgae. While species-specific requirements for light intensity and photoperiod have been observed in several diatom species, little is known about the light spectrum that allows sexual reproduction. Here, we study the effects of spectral properties and light intensity on the initiation and progression of sexual reproduction in the model benthic diatom Seminavis robusta. We found that distinct stages of the mating process have different requirements for light. Vigorous mating pair formation occurred under a broad range of light intensities, ranging from 10 to 81 µE m
Identifiants
pubmed: 34475415
doi: 10.1038/s41598-021-92838-0
pii: 10.1038/s41598-021-92838-0
pmc: PMC8413402
doi:
Substances chimiques
Sex Attractants
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17560Informations de copyright
© 2021. The Author(s).
Références
Bioessays. 2008 Jul;30(7):692-702
pubmed: 18536039
FEMS Microbiol Ecol. 2018 Nov 1;94(11):
pubmed: 30124817
Bioessays. 2007 Jun;29(6):511-4
pubmed: 17508404
Nat Ecol Evol. 2021 Jan;5(1):55-66
pubmed: 33168993
Arch Mikrobiol. 1971;80(2):134-46
pubmed: 5171553
Int Rev Cytol. 2004;237:91-154
pubmed: 15380667
Front Microbiol. 2019 Jun 05;10:1255
pubmed: 31231340
ISME J. 2019 Feb;13(2):537-546
pubmed: 30301945
J Plant Physiol. 2017 Oct;217:15-19
pubmed: 28720252
Nat Methods. 2017 Apr;14(4):417-419
pubmed: 28263959
Plant Cell. 2016 Mar;28(3):616-28
pubmed: 26941092
Plant J. 2021 Jul;107(1):315-336
pubmed: 33901335
PLoS One. 2018 Jun 8;13(6):e0196744
pubmed: 29883488
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Genome Biol. 2010;11(2):R17
pubmed: 20146805
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19625-30
pubmed: 18003911
PLoS One. 2013 Sep 20;8(9):e74451
pubmed: 24073211
Plant Physiol. 2008 Nov;148(3):1394-411
pubmed: 18820084
Cell Motil Cytoskeleton. 1999;44(1):23-33
pubmed: 10470016
Angew Chem Int Ed Engl. 2013 Jan 14;52(3):854-7
pubmed: 23315901
Genes (Basel). 2019 Jun 28;10(7):
pubmed: 31261777
Plant Physiol. 1986 Apr;80(4):918-25
pubmed: 16664742
Nat Commun. 2018 Jan 25;9(1):373
pubmed: 29371626
ISME J. 2021 Feb;15(2):562-576
pubmed: 33028976
J Phycol. 1968 Jun;4(2):85-8
pubmed: 27067943
Biom J. 2008 Jun;50(3):346-63
pubmed: 18481363
Plant Cell. 2013 Jan;25(1):215-28
pubmed: 23292736
F1000Res. 2015 Dec 30;4:1521
pubmed: 26925227
iScience. 2020 Oct 24;23(11):101730
pubmed: 33235981
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Trends Plant Sci. 2000 Jan;5(1):12-7
pubmed: 10637656
Exp Cell Res. 1986 Nov;167(1):38-52
pubmed: 3758209
Sci Rep. 2016 Jan 20;6:19252
pubmed: 26786712
Nature. 2018 Jun;558(7711):595-599
pubmed: 29925949
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
J Exp Bot. 2012 Feb;63(4):1575-91
pubmed: 22328904
J Plant Physiol. 2017 Oct;217:20-26
pubmed: 28797596
PLoS One. 2011;6(10):e26923
pubmed: 22046412
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
J Phycol. 2009 Jun;45(3):592-9
pubmed: 27034035
PLoS Genet. 2016 Dec 14;12(12):e1006490
pubmed: 27973599
New Phytol. 2017 Jul;215(1):140-156
pubmed: 28429538
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Nat Commun. 2018 Nov 28;9(1):5050
pubmed: 30487611
Data Brief. 2019 Jun 02;25:104020
pubmed: 31440533
Plant Physiol. 2012 Feb;158(2):590-600
pubmed: 22198273
Protist. 2014 Aug;165(4):401-16
pubmed: 24907651
FEMS Microbiol Ecol. 2009 Aug;69(2):194-201
pubmed: 19486155
Nat Commun. 2020 Jul 3;11(1):3320
pubmed: 32620776