Targeting Mitochondrial Oxidative Phosphorylation in Glioblastoma Therapy.


Journal

Neuromolecular medicine
ISSN: 1559-1174
Titre abrégé: Neuromolecular Med
Pays: United States
ID NLM: 101135365

Informations de publication

Date de publication:
03 2022
Historique:
received: 01 01 2021
accepted: 10 07 2021
pubmed: 7 9 2021
medline: 5 4 2022
entrez: 6 9 2021
Statut: ppublish

Résumé

As a multi-functional cellular organelle, mitochondrial metabolic reprogramming is well recognized as a hallmark of cancer. The center of mitochondrial metabolism is oxidative phosphorylation (OXPHOS), in which cells use enzymes to oxidize nutrients, thereby converting the chemical energy to the biological energy currency ATPs. OXPHOS also creates the mitochondrial membrane potential and serve as the driving force of other mitochondrial metabolic pathways and experiences significant reshape in the different stages of tumor progression. In this minireview, we reviewed the major mitochondrial pathways that are connected to OXPHOS and are affected in cancer cells. In addition, we summarized the function of novel bio-active molecules targeting mitochondrial metabolic processes such as OXPHOS, mitochondrial membrane potential and mitochondrial dynamics. These molecules exhibit intriguing preclinical and clinical results and have been proven to be promising antitumor candidates in recent studies.

Identifiants

pubmed: 34487301
doi: 10.1007/s12017-021-08678-8
pii: 10.1007/s12017-021-08678-8
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

18-22

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Bonnay, F., Veloso, A., Steinmann, V., Köcher, T., Deniz Abdusselamoglu, M., Bajaj, S., Rivelles, E., Landskron, L., Esterbauer, H., Zinzen, R. P., & Knoblich, J. A. (2020). Oxidative metabolism drives immortalization of neural stem cells during tumorigenesis. Cell, 182(6), 1490. https://doi.org/10.1016/j.cell.2020.07.039
doi: 10.1016/j.cell.2020.07.039 pubmed: 32916131
Chinopoulos, C., & Seyfried, T. N. (2018). Mitochondrial substrate-level phosphorylation as energy source for glioblastoma: Review and hypothesis. The American Society of Neurochemistry. https://doi.org/10.1177/1759091418818261
doi: 10.1177/1759091418818261
Cooper, M. G. (2000). The mechanism of oxidative phosphorylation. Sinauer Associates.
DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., & Thompson, C. B. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19345. https://doi.org/10.1073/pnas.0709747104
doi: 10.1073/pnas.0709747104 pubmed: 18032601 pmcid: 2148292
Degli Esposti, M. (1998). Inhibitors of NADH-ubiquinone reductase: An overview. Biochimica Et Biophysica Acta (BBA) - Bioenergetics, 1364(2), 222. https://doi.org/10.1016/s0005-2728(98)00029-2
doi: 10.1016/s0005-2728(98)00029-2
Esparza-Moltó, P. B., & Cuezva, J. M. (2018). The role of mitochondrial H +-ATP synthase in cancer. Frontiers in Oncology. https://doi.org/10.3389/fonc.2018.00053
doi: 10.3389/fonc.2018.00053 pubmed: 29564224 pmcid: 5845864
Fang, Y., & Zhang, Z. (2020). Arsenic trioxide as a novel anti-glioma drug: A review. Cellular & Molecular Biology Letters. https://doi.org/10.1186/s11658-020-00236-7
doi: 10.1186/s11658-020-00236-7
Fiorillo, M., Lamb, R., Tanowitz, H. B., Cappello, A. R., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2016a). Bedaquiline, an FDA-approved antibiotic, inhibits mitochondrial function and potently blocks the proliferative expansion of stem-like cancer cells (CSCs). Aging, 8(8), 1593. https://doi.org/10.18632/aging.100983
doi: 10.18632/aging.100983 pubmed: 27344270 pmcid: 5032685
Fiorillo, M., Lamb, R., Tanowitz, H. B., Mutti, L., Krstic-Demonacos, M., Rita Cappello, A., Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2016b). Repurposing atovaquone: Targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget, 7(23), 34084. https://doi.org/10.18632/oncotarget.9122
doi: 10.18632/oncotarget.9122 pubmed: 27136895 pmcid: 5085139
Guièze, R., Liu, V. M., Rosebrock, D., Jourdain, A. A., Hernández-Sánchez, M., Martinez Zurita, A., Sun, J., Ten Hacken, E., Baranowski, K., Thompson, P. A., Heo, J.-M., Cartun, Z., Aygün, O., BryanIorgulescu, J., Zhang, W., Notarangelo, G., Livitz, D., Li, S., Davids, M. S., … Wu, C. J. (2019). Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell, 36(4), 369. https://doi.org/10.1016/j.ccell.2019.08.005
doi: 10.1016/j.ccell.2019.08.005 pubmed: 31543463 pmcid: 6801112
Guntuku, L., Naidu, V. G., & Yerra, V. G. (2016). Mitochondrial dysfunction in gliomas: Pharmacotherapeutic potential of natural compounds. Current Neuropharmacology, 14(6), 567. https://doi.org/10.2174/1570159x14666160121115641
doi: 10.2174/1570159x14666160121115641 pubmed: 26791479 pmcid: 4981742
Janiszewska, M., Suvà, M. L., Riggi, N., Houtkooper, R. H., Auwerx, J., Clément-Schatlo, V., Radovanovic, I., Rheinbay, E., Provero, P., & Stamenkovic, I. (2012). Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes & Development, 26(17), 1926. https://doi.org/10.1101/gad.188292.112
doi: 10.1101/gad.188292.112
Kanderi, T., & Gupta, V. (2020). Glioblastoma multiforme. Statpearls Publishing.
Kuramoto, K., Suzuki, S., Sakaki, H., Takeda, H., Sanomachi, T., Seino, S., Narita, Y., Kayama, T., Kitanaka, C., & Okada, M. (2017). Licochalcone A specifically induces cell death in glioma stem cells via mitochondrial dysfunction. FEBS Open Bio, 7(6), 835. https://doi.org/10.1002/2211-5463.12226
doi: 10.1002/2211-5463.12226 pubmed: 28593138 pmcid: 5458486
Kuramoto, K., Yamamoto, M., Suzuki, S., Sanomachi, T., Togashi, K., Seino, S., Kitanaka, C., & Okada, M. (2020). Verteporfin inhibits oxidative phosphorylation and induces cell death specifically in glioma stem cells. The FEBS Journal, 287(10), 2023. https://doi.org/10.1111/febs.15187
doi: 10.1111/febs.15187 pubmed: 31868973
Lee, K. S., Wu, Z., Song, Y., Mitra, S. S., Feroze, A. H., Cheshier, S. H., & Lu, B. (2013). Roles of PINK1, mTORC2, and mitochondria in preserving brain tumor-forming stem cells in a noncanonical notch signaling pathway. Genes & Development, 27(24), 2642. https://doi.org/10.1101/gad.225169.113
doi: 10.1101/gad.225169.113
Legros, F., Lombès, A., Frachon, P., & Rojo, M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Molecular Biology of the Cell, 13(12), 4343. https://doi.org/10.1091/mbc.e02-06-0330
doi: 10.1091/mbc.e02-06-0330 pubmed: 12475957 pmcid: 138638
Liesa, M., & Shirihai, O. S. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metabolism, 17(4), 491. https://doi.org/10.1016/j.cmet.2013.03.002
doi: 10.1016/j.cmet.2013.03.002 pubmed: 23562075 pmcid: 5967396
Mi-Ichi, F., Miyadera, H., Kobayashi, T., Takamiya, S., Waki, S., Iwata, S., Shibata, S., & Kita, K. (2005). Parasite mitochondria as a target of chemotherapy: Inhibitory effect of licochalcone A on the Plasmodium falciparum respiratory chain. Annals of the New York Academy of Sciences. https://doi.org/10.1196/annals.1352.037
doi: 10.1196/annals.1352.037 pubmed: 16387676
Mishra, P., & Chan, D. C. (2016). Metabolic regulation of mitochondrial dynamics. The Journal of Cell Biology, 212(4), 379. https://doi.org/10.1083/jcb.201511036
doi: 10.1083/jcb.201511036 pubmed: 26858267 pmcid: 4754720
Muz, B., de la Puente, P., Azab, F., & Azab, A. K. (2015). The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (auckland). https://doi.org/10.2147/HP.S93413
doi: 10.2147/HP.S93413
Neupane, P., Bhuju, S., Thapa, N., & Bhattarai, H. K. (2019). ATP synthase: Structure function and inhibition. Biomolecular Concepts, 10(1), 1. https://doi.org/10.1515/bmc-2019-0001
doi: 10.1515/bmc-2019-0001 pubmed: 30888962
Ralph, S. J., Moreno-Sánchez, R., Neuzil, J., & Rodríguez-Enríquez, S. (2011). Inhibitors of succinate: Quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharmaceutical Research, 28(11), 2695. https://doi.org/10.1007/s11095-011-0566-7
doi: 10.1007/s11095-011-0566-7 pubmed: 21863476
Ramamoorthy, M. D., Kumar, A., Ayyavu, M., & Dhiraviam, K. N. (2018). Reserpine induces apoptosis and cell cycle arrest in hormone independent prostate cancer cells through mitochondrial membrane potential failure. Anti-Cancer Agents in Medicinal Chemistry, 18(9), 1313. https://doi.org/10.2174/1871520618666180209152215
doi: 10.2174/1871520618666180209152215 pubmed: 29424320
Seyfried, T. N., & Mukherjee, P. (2005). Targeting energy metabolism in brain cancer: Review and hypothesis. Nutrition & Metabolism. https://doi.org/10.1186/1743-7075-2-30
doi: 10.1186/1743-7075-2-30
Shi, Y., Lim, S. K., Liang, Q., Iyer, S. V., Wang, H. Y., Wang, Z., Xie, X., Sun, D., Chen, Y. J., Tabar, V., Gutin, P., Williams, N., De Brabander, J. K., & Parada, L. F. (2019). Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature, 567(7748), 341. https://doi.org/10.1038/s41586-019-0993-x
doi: 10.1038/s41586-019-0993-x pubmed: 30842654 pmcid: 6655586
Strickland, M., & Stoll, E. A. (2017). Metabolic reprogramming in glioma. Frontiers in Cell and Developmental Biology. https://doi.org/10.3389/fcell.2017.00043
doi: 10.3389/fcell.2017.00043 pubmed: 28491867 pmcid: 5405080
Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science (new York), 324(5930), 1029. https://doi.org/10.1126/science.1160809
doi: 10.1126/science.1160809
Voet, D., Voet, J. G., & Pratt, C. W. (2006). Fundamentals of biochemistry (2nd ed.). Wiley.
Wan, Y. Y., Zhang, J. F., Yang, Z. J., Jiang, L. P., Wei, Y. F., Lai, Q. N., Wang, J. B., Xin, H. B., & Han, X. J. (2014). Involvement of Drp1 in hypoxia-induced migration of human glioblastoma U251 cells. Oncology Reports, 32(2), 619. https://doi.org/10.3892/or.2014.3235
doi: 10.3892/or.2014.3235 pubmed: 24899388
Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519. https://doi.org/10.1085/jgp.8.6.519
doi: 10.1085/jgp.8.6.519 pubmed: 19872213 pmcid: 2140820
Xie, Q., Wu, Q., Horbinski, C. M., Flavahan, W. A., Yang, K., Zhou, W., Dombrowski, S. M., Huang, Z., Fang, X., Shi, Y., Ferguson, A. N., Kashatus, D. F., Bao, S., & Rich, J. N. (2015). Mitochondrial control by DRP1 in brain tumor initiating cells. Nature Neuroscience, 18(4), 501. https://doi.org/10.1038/nn.3960
doi: 10.1038/nn.3960 pubmed: 25730670 pmcid: 4376639

Auteurs

Zhihao Wu (Z)

Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA. zhihaowu@smu.edu.

Winson S Ho (WS)

Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.

Rongze Lu (R)

Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA. Rongze.Lu@austin.utexas.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH