Prognostic value of polygenic risk scores for adults with psychosis.
Journal
Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
06
03
2021
accepted:
22
07
2021
pubmed:
8
9
2021
medline:
9
10
2021
entrez:
7
9
2021
Statut:
ppublish
Résumé
Polygenic risk scores (PRS) summarize genetic liability to a disease at the individual level, and the aim is to use them as biomarkers of disease and poor outcomes in real-world clinical practice. To date, few studies have assessed the prognostic value of PRS relative to standards of care. Schizophrenia (SCZ), the archetypal psychotic illness, is an ideal test case for this because the predictive power of the SCZ PRS exceeds that of most other common diseases. Here, we analyzed clinical and genetic data from two multi-ethnic cohorts totaling 8,541 adults with SCZ and related psychotic disorders, to assess whether the SCZ PRS improves the prediction of poor outcomes relative to clinical features captured in a standard psychiatric interview. For all outcomes investigated, the SCZ PRS did not improve the performance of predictive models, an observation that was generally robust to divergent case ascertainment strategies and the ancestral background of the study participants.
Identifiants
pubmed: 34489608
doi: 10.1038/s41591-021-01475-7
pii: 10.1038/s41591-021-01475-7
pmc: PMC8446329
mid: NIHMS1732074
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1576-1581Subventions
Organisme : NIMH NIH HHS
ID : R01 MH104964
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH085548
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH123451
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH121922
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH121923
Pays : United States
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Wray, N. R., Goddard, M. E. & Visscher, P. M. Prediction of individual genetic risk of complex disease. Curr. Opin. Genet. Dev. 18, 257–263 (2008).
pubmed: 18682292
doi: 10.1016/j.gde.2008.07.006
International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).
pmcid: 3912837
doi: 10.1038/nature08185
Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).
pubmed: 25635347
pmcid: 5101938
doi: 10.1056/NEJMp1500523
Green, E. D. et al. Strategic vision for improving human health at The Forefront of Genomics. Nature 586, 683–692 (2020).
pubmed: 33116284
pmcid: 7869889
doi: 10.1038/s41586-020-2817-4
Warren, M. The approach to predictive medicine that is taking genomics research by storm. Nature 562, 181–183 (2018).
pubmed: 30305759
doi: 10.1038/d41586-018-06956-3
Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12, 44 (2020).
pubmed: 32423490
pmcid: 7236300
doi: 10.1186/s13073-020-00742-5
Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).
pubmed: 30478444
doi: 10.1038/s41588-018-0269-7
Levey, D. F. et al. Reproducible genetic risk loci for anxiety: results from ~200,000 participants in the Million Veteran Program. Am. J. Psychiatry 177, 223–232 (2020).
pubmed: 31906708
pmcid: 7869502
doi: 10.1176/appi.ajp.2019.19030256
Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).
pubmed: 30617256
pmcid: 6836675
doi: 10.1038/s41588-018-0311-9
Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).
pubmed: 34002096
doi: 10.1038/s41588-021-00857-4
pmcid: 8192451
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).
pubmed: 29700475
pmcid: 5934326
doi: 10.1038/s41588-018-0090-3
Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).
pubmed: 31701892
pmcid: 8422160
doi: 10.1016/S1474-4422(19)30320-5
Misganaw, B. et al. Polygenic risk associated with post-traumatic stress disorder onset and severity. Transl. Psychiatry 9, 165 (2019).
pubmed: 31175274
pmcid: 6555815
doi: 10.1038/s41398-019-0497-3
The Schizophrenia Working Group of the Psychiatric Genomics Consortium. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. Preprint at medRxiv https://doi.org/10.1101/2020.09.12.20192922 (2020).
Oetjens, M. T., Kelly, M. A., Sturm, A. C., Martin, C. L. & Ledbetter, D. H. Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders. Nat. Commun. 10, 4897 (2019).
pubmed: 31653860
pmcid: 6814771
doi: 10.1038/s41467-019-12869-0
Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).
pubmed: 30104762
pmcid: 6128408
doi: 10.1038/s41588-018-0183-z
Haas, M. E. et al. Genetic association of albuminuria with cardiometabolic disease and blood pressure. Am. J. Hum. Genet. 103, 461–473 (2018).
pubmed: 30220432
pmcid: 6174360
doi: 10.1016/j.ajhg.2018.08.004
Suvisaari, J. et al. Is it possible to predict the future in first-episode psychosis? Front. Psychiatry 9, 580 (2018).
pubmed: 30483163
pmcid: 6243124
doi: 10.3389/fpsyt.2018.00580
Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell 184, 2068–2083 (2021).
pubmed: 33861964
doi: 10.1016/j.cell.2021.03.034
Tayo, B. O. et al. Genetic background of patients from a university medical center in Manhattan: implications for personalized medicine. PLoS ONE 6, e19166 (2011).
pubmed: 21573225
pmcid: 3087725
doi: 10.1371/journal.pone.0019166
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
pmcid: 4112379
doi: 10.1038/nature13595
Pato, M. T. et al. The genomic psychiatry cohort: partners in discovery. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 306–312 (2013).
pubmed: 23650244
doi: 10.1002/ajmg.b.32160
McGuffin, P., Farmer, A. & Harvey, I. A polydiagnostic application of operational criteria in studies of psychotic illness: development and reliability of the OPCRIT system. Arch. Gen. Psychiatry 48, 764–770 (1991).
pubmed: 1883262
doi: 10.1001/archpsyc.1991.01810320088015
Bigdeli, T. B. et al. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Mol. Psychiatry 25, 2455–2467 (2020).
pubmed: 31591465
doi: 10.1038/s41380-019-0517-y
Goddard, M. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136, 245–257 (2009).
pubmed: 18704696
doi: 10.1007/s10709-008-9308-0
Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001).
pubmed: 11290733
pmcid: 1461589
doi: 10.1093/genetics/157.4.1819
Zhang, J.-P. et al. Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first episode psychosis. Am. J. Psychiatry 176, 21–28 (2019).
pubmed: 30392411
doi: 10.1176/appi.ajp.2018.17121363
Zheutlin, A. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am. J. Psychiatry 176, 846–855 (2019).
pubmed: 31416338
pmcid: 6961974
doi: 10.1176/appi.ajp.2019.18091085
Mosley, J. D. et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA 323, 627–635 (2020).
pubmed: 32068817
pmcid: 7042849
doi: 10.1001/jama.2019.21782
Vassos, E. et al. An examination of polygenic score risk prediction in individuals with first-episode psychosis. Biol. Psychiatry 81, 470–477 (2017).
pubmed: 27765268
doi: 10.1016/j.biopsych.2016.06.028
Perkins, D. O. et al. Polygenic risk score contribution to psychosis prediction in a target population of persons at clinical high risk. Am. J. Psychiatry 177, 155–163 (2020).
pubmed: 31711302
doi: 10.1176/appi.ajp.2019.18060721
Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat. Med. 26, 1912–1918 (2020).
pubmed: 33169016
pmcid: 7975627
doi: 10.1038/s41591-020-1103-1
World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Diagnostic Criteria for Research (World Health Organization, 1993).
Soysal, E. et al. CLAMP: a toolkit for efficiently building customized clinical natural language processing pipelines. J. Am. Med. Inform. Assoc. 25, 331–336 (2018).
pubmed: 29186491
doi: 10.1093/jamia/ocx132
Ruderfer, D. M. et al. Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 3, 350–357 (2016).
pubmed: 26915512
pmcid: 4982509
doi: 10.1016/S2215-0366(15)00553-2
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852
pmcid: 4342193
doi: 10.1186/s13742-015-0047-8
Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Gibbs, R. A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
O’Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet. 10, e1004234 (2014).
pubmed: 24743097
pmcid: 3990520
doi: 10.1371/journal.pgen.1004234
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
pubmed: 19543373
pmcid: 2689936
doi: 10.1371/journal.pgen.1000529
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
pubmed: 16862161
doi: 10.1038/ng1847
Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).
pubmed: 18216267
pmcid: 2234100
doi: 10.1073/pnas.0706851105
Rosvall, M. & Bergstrom, C. T. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLoS ONE 6, e18209 (2011).
pubmed: 21494658
pmcid: 3072965
doi: 10.1371/journal.pone.0018209
Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).
pubmed: 31307061
pmcid: 6629542
doi: 10.1093/gigascience/giz082
Harrell, F. E. rms: Regression Modeling Strategies. R package version 6.1-1. https://CRAN.R-project.org/package=rms (2021).
Pedregosa, F. et al. Scikit-learn: Machine Learning in Python https://arxiv.org/abs/1201.0490 (2018).
Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28 https://cran.r-project.org/web/packages/boot/index.html (2021).
Davison, A. C. & Hinkley, D. V. Bootstrap Methods and their Application (Cambridge University Press, 1997).
Champely, S. et al. pwr: Basic Functions for Power Analysis http://cran.r-project.org/web/packages/pwr/ (2020).