Clinically Oriented Target Contour Evaluation Using Geometric and Dosimetric Indices Based on Simple Geometric Transformations.
contour evaluation
dosimetric indices
geometric indices
geometric transformation
target volume
Journal
Technology in cancer research & treatment
ISSN: 1533-0338
Titre abrégé: Technol Cancer Res Treat
Pays: United States
ID NLM: 101140941
Informations de publication
Date de publication:
Historique:
entrez:
7
9
2021
pubmed:
8
9
2021
medline:
27
1
2022
Statut:
ppublish
Résumé
In radiotherapy, geometric indices are often used to evaluate the accuracy of contouring. However, the ability of geometric indices to identify the error of contouring results is limited primarily because they do not consider the clinical background. The purpose of this study is to investigate the relationship between geometric and clinical dosimetric indices. Four different types of targets were selected (C-shaped target, oropharyngeal cancer, metastatic spine cancer, and prostate cancer), and the translation, scaling, rotation, and sine function transformation were performed with the software Python to introduce systematic and random errors. The transformed contours were regarded as reference contours. Dosimetric indices were obtained from the original dose distribution of the radiotherapy plan. The correlations between geometric and dosimetric indices were quantified by linear regression. The correlations between the geometric and dosimetric indices were inconsistent. For systematic errors, and with the exception of the sine function transformation (R Clinically, an assessment of the contour accuracy of the region-of-interest is not feasible based on geometric indices alone. Dosimetric indices should be added to the evaluations of the accuracy of the delineation results, which can be helpful for explaining the clinical dose response relationship of delineation more comprehensively and accurately.
Identifiants
pubmed: 34490802
doi: 10.1177/15330338211036325
pmc: PMC8427914
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15330338211036325Références
Med Phys. 2009 Nov;36(11):5359-73
pubmed: 19994544
Strahlenther Onkol. 2019 Dec;195(12):1094-1103
pubmed: 31037351
Radiother Oncol. 2011 Mar;98(3):373-7
pubmed: 21269714
J Med Imaging Radiat Oncol. 2010 Oct;54(5):401-10
pubmed: 20958937
Med Phys. 2012 Oct;39(10):6332-8
pubmed: 23039669
Clin Oncol (R Coll Radiol). 2010 Sep;22(7):515-25
pubmed: 20554168
Strahlenther Onkol. 2012 Jan;188(1):97-9
pubmed: 22234506
Radiother Oncol. 2016 Dec;121(3):424-430
pubmed: 27697296
Phys Med Biol. 2018 Jul 11;63(14):145007
pubmed: 29882749
Int J Radiat Oncol Biol Phys. 2019 Apr 1;103(5):1251-1260
pubmed: 30508619
Radiother Oncol. 2015 Oct;117(1):83-90
pubmed: 26277855
Radiat Oncol. 2012 Sep 18;7:160
pubmed: 22989046
Int J Radiat Oncol Biol Phys. 2012 Oct 1;84(2):e245-9
pubmed: 22583602
Radiat Oncol. 2012 Mar 13;7:32
pubmed: 22414264
Int J Radiat Oncol Biol Phys. 2019 Jul 1;104(3):677-684
pubmed: 30836167
J Appl Clin Med Phys. 2016 Mar 08;17(2):41-49
pubmed: 27074471
Radiother Oncol. 2019 Feb;131:215-220
pubmed: 30107948
Int J Radiat Oncol Biol Phys. 2012 Jan 1;82(1):368-78
pubmed: 21123004
Front Oncol. 2020 Sep 29;10:564737
pubmed: 33117694
Acta Oncol. 2013 Oct;52(7):1417-22
pubmed: 23957565
Radiother Oncol. 2016 Nov;121(2):169-179
pubmed: 27729166
BMC Med Imaging. 2015 Aug 12;15:29
pubmed: 26263899
Int J Radiat Oncol Biol Phys. 2000 Mar 15;46(5):1309-17
pubmed: 10725645
Int J Radiat Oncol Biol Phys. 2013 Nov 15;87(4):809-16
pubmed: 24138920
Artif Intell Med. 2018 Aug;90:34-41
pubmed: 30054121
Acta Oncol. 2016 Jul;55(7):799-806
pubmed: 27248772
Int J Radiat Oncol Biol Phys. 2010 Jul 1;77(3):707-14
pubmed: 20231063