Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
23
04
2021
accepted:
04
09
2021
pubmed:
8
9
2021
medline:
9
4
2022
entrez:
7
9
2021
Statut:
ppublish
Résumé
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Identifiants
pubmed: 34490971
doi: 10.1111/1462-2920.15762
doi:
Substances chimiques
Bacterial Proteins
0
Type VI Secretion Systems
0
Polymyxin B
J2VZ07J96K
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1133-1149Informations de copyright
© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Abdelraouf, K., He, J., Ledesma, K.R., Hu, M., and Tam, V.H. (2012) Pharmacokinetics and renal disposition of polymyxin B in an animal model. Antimicrob Agents Chemother 56: 5724-5727. https://doi.org/10.1128/AAC.01333-12.
Absalon, C., Van Dellen, K., and Watnick, P.I. (2011) A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog 7: e1002210. https://doi.org/10.1371/journal.ppat.1002210.
Allue-Guardia, A., Echazarreta, M., Koenig, S.S.K., Klose, K.E., and Eppinger, M. (2018) Closed genome sequence of Vibrio cholerae O1 El Tor Inaba strain A1552. Genome Announc 6: e00098-18. https://doi.org/10.1128/genomeA.00098-18.
Altindis, E., Dong, T., Catalano, C., and Mekalanos, J. (2015) Secretome analysis of Vibrio cholerae type VI secretion system reveals a new effector-immunity pair. mBio 6: e00075. https://doi.org/10.1128/mBio.00075-15.
Ballister, E.R., Lai, A.H., Zuckermann, R.N., Cheng, Y., and Mougous, J.D. (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105: 3733-3738. https://doi.org/10.1073/pnas.0712247105.
Bina, J.E., Provenzano, D., Wang, C., Bina, X.R., and Mekalanos, J.J. (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186: 171-181. https://doi.org/10.1007/s00203-006-0133-5.
Bonemann, G., Pietrosiuk, A., Diemand, A., Zentgraf, H., and Mogk, A. (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28: 315-325. https://doi.org/10.1038/emboj.2008.269.
Bonifait, L., Charette, S.J., Filion, G., Gottschalk, M., and Grenier, D. (2011) Amoeba host model for evaluation of Streptococcus suis virulence. Appl Environ Microbiol 77: 6271-6273. https://doi.org/10.1128/AEM.00659-11.
Brogden, K.A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3: 238-250. https://doi.org/10.1038/nrmicro1098.
Broms, J.E., Ishikawa, T., Wai, S.N., and Sjostedt, A. (2013) A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol 13: 96. https://doi.org/10.1186/1471-2180-13-96.
Chiang, S.L., and Mekalanos, J.J. (1999) rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 67: 976-980. https://doi.org/10.1128/IAI.67.2.976-980.1999.
Chiavelli, D.A., Marsh, J.W., and Taylor, R.K. (2001) The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67: 3220-3225. https://doi.org/10.1128/AEM.67.7.3220-3225.2001.
Clemens, J.D., Nair, G.B., Ahmed, T., Qadri, F., and Holmgren, J. (2017) Cholera. Lancet 390: 1539-1549. https://doi.org/10.1016/S0140-6736(17)30559-7.
Crepin, S., Ottosen, E.N., Peters, K., Smith, S.N., Himpsl, S.D., Vollmer, W., and Mobley, H.L.T. (2018) The lytic transglycosylase MltB connects membrane homeostasis and in vivo fitness of Acinetobacter baumannii. Mol Microbiol 109: 745-762. https://doi.org/10.1111/mmi.14000.
Crisan, C.V., Chande, A.T., Williams, K., Raghuram, V., Rishishwar, L., Steinbach, G., et al. (2019) Analysis of Vibrio cholerae genomes identifies new type VI secretion system gene clusters. Genome Biol 20: 163. https://doi.org/10.1186/s13059-019-1765-5.
da Costa, J.P., Cova, M., Ferreira, R., and Vitorino, R. (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99: 2023-2040. https://doi.org/10.1007/s00253-015-6375-x.
Daugelavicius, R., Bakiene, E., and Bamford, D.H. (2000) Stages of polymyxin B interaction with the Escherichia coli cell envelope. Antimicrob Agents Chemother 44: 2969-2978. https://doi.org/10.1128/aac.44.11.2969-2978.2000.
Davis, C.A., and Janssen, E.M. (2020) Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. Environ Int 134: 105271. https://doi.org/10.1016/j.envint.2019.105271.
Deen, J., Mengel, M.A., and Clemens, J.D. (2020) Epidemiology of cholera. Vaccine 38 (Suppl 1): A31-A40. https://doi.org/10.1016/j.vaccine.2019.07.078.
Del Peso Santos, T., Alvarez, L., Sit, B., Irazoki, O., Blake, J., Warner, B.R., et al. (2021) BipA exerts temperature-dependent translational control of biofilm-associated colony morphology in Vibrio cholerae. Elife 10: e60607. https://doi.org/10.7554/eLife.60607.
Destoumieux-Garzon, D., Duperthuy, M., Vanhove, A.S., Schmitt, P., and Wai, S.N. (2014) Resistance to antimicrobial peptides in Vibrios. Antibiotics (Basel) 3: 540-563. https://doi.org/10.3390/antibiotics3040540.
Destoumieux-Garzon, D., Rosa, R.D., Schmitt, P., Barreto, C., Vidal-Dupiol, J., Mitta, G., et al. (2016) Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 371: 20150300. https://doi.org/10.1098/rstb.2015.0300.
Drebes Dorr, N.C., and Blokesch, M. (2020) Interbacterial competition and anti-predatory behaviour of environmental Vibrio cholerae strains. Environ Microbiol 22: 4485-4504. https://doi.org/10.1111/1462-2920.15224.
Duperthuy, M. (2020) Antimicrobial peptides: virulence and resistance modulation in Gram-negative bacteria. Microorganisms 8: 280. https://doi.org/10.3390/microorganisms8020280.
Duperthuy, M., Sjostrom, A.E., Sabharwal, D., Damghani, F., Uhlin, B.E., and Wai, S.N. (2013) Role of the Vibrio cholerae matrix protein Bap1 in cross-resistance to antimicrobial peptides. PLoS Pathog 9: e1003620. https://doi.org/10.1371/journal.ppat.1003620.
Duperthuy, M., Uhlin, B.E., and Wai, S.N. (2015) Biofilm recruitment of Vibrio cholerae by matrix proteolysis. Trends Microbiol 23: 667-668. https://doi.org/10.1016/j.tim.2015.09.004.
Ferenci, T., Zhou, Z., Betteridge, T., Ren, Y., Liu, Y., Feng, L., et al. (2009) Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol 191: 4025-4029. https://doi.org/10.1128/JB.00118-09.
Gadwal, S., Korotkov, K.V., Delarosa, J.R., Hol, W.G., and Sandkvist, M. (2014) Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB. J Biol Chem 289: 8288-8298. https://doi.org/10.1074/jbc.M113.525261.
Giacomucci, S., Cros, C.D., Perron, X., Mathieu-Denoncourt, A., and Duperthuy, M. (2019) Flagella-dependent inhibition of biofilm formation by sub-inhibitory concentration of polymyxin B in Vibrio cholerae. PLoS One 14: e0221431. https://doi.org/10.1371/journal.pone.0221431.
Haley, B.J., Choi, S.Y., Grim, C.J., Onifade, T.J., Cinar, H.N., Tall, B.D., et al. (2014) Genomic and phenotypic characterization of Vibrio cholerae non-O1 isolates from a US Gulf Coast cholera outbreak. PLoS One 9: e86264. https://doi.org/10.1371/journal.pone.0086264.
Halpern, M., and Izhaki, I. (2017) Fish as hosts of Vibrio cholerae. Front Microbiol 8: 282. https://doi.org/10.3389/fmicb.2017.00282.
Hankins, J.V., Madsen, J.A., Giles, D.K., Childers, B.M., Klose, K.E., Brodbelt, J.S., and Trent, M.S. (2011) Elucidation of a novel Vibrio cholerae lipid A secondary hydroxy-acyltransferase and its role in innate immune recognition. Mol Microbiol 81: 1313-1329. https://doi.org/10.1111/j.1365-2958.2011.07765.x.
Hatzios, S.K., Abel, S., Martell, J., Hubbard, T., Sasabe, J., Munera, D., et al. (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12: 268-274. https://doi.org/10.1038/nchembio.2025.
Heidelberg, J.F., Eisen, J.A., Nelson, W.C., Clayton, R.A., Gwinn, M.L., Dodson, R.J., et al. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477-483. https://doi.org/10.1038/35020000.
Howell, M., Dumitrescu, D.G., Blankenship, L.R., Herkert, D., and Hatzios, S.K. (2019) Functional characterization of a subtilisin-like serine protease from Vibrio cholerae. J Biol Chem 294: 9888-9900. https://doi.org/10.1074/jbc.RA119.007745.
Ibrahim, M., Ahmad, F., Yaqub, F., Ramzan, A., Imran, A., Afzaal, M., et al. (2020) Current trends of antimicrobials used in food animals and aquaculture. In Advances in Environmental Pollution Research Series, Antibiotics and Antimicrobial Resistance Genes in the Environment, Vol. 1, Hashmi, M.Z. (ed). Amsterdam: Elsevier, pp. 39-69. https://doi.org/10.1016/B978-0-12-818882-8.00004-8.
Ishikawa, T., Rompikuntal, P.K., Lindmark, B., Milton, D.L., and Wai, S.N. (2009) Quorum sensing regulation of the two hcp alleles in Vibrio cholerae O1 strains. PLoS One 4: e6734. https://doi.org/10.1371/journal.pone.0006734.
Ishikawa, T., Sabharwal, D., Broms, J., Milton, D.L., Sjostedt, A., Uhlin, B.E., and Wai, S.N. (2012) Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 80: 575-584. https://doi.org/10.1128/IAI.05510-11.
Jemielita, M., Wingreen, N.S., and Bassler, B.L. (2018) Quorum sensing controls Vibrio cholerae multicellular aggregate formation. Elife 7: e42057. https://doi.org/10.7554/eLife.42057.
Jones, C., Allsopp, L., Horlick, J., Kulasekara, H., and Filloux, A. (2013) Subinhibitory concentration of kanamycin induces the Pseudomonas aeruginosa type VI secretion system. PLoS One 8: e81132. https://doi.org/10.1371/journal.pone.0081132.
Joshi, A., Kostiuk, B., Rogers, A., Teschler, J., Pukatzki, S., and Yildiz, F.H. (2017) Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol 25: 267-279. https://doi.org/10.1016/j.tim.2016.12.003.
Kapitein, N., Bonemann, G., Pietrosiuk, A., Seyffer, F., Hausser, I., Locker, J.K., and Mogk, A. (2013) ClpV recycles VipA/VipB tubules and prevents non-productive tubule formation to ensure efficient type VI protein secretion. Mol Microbiol 87: 1013-1028. https://doi.org/10.1111/mmi.12147.
Kierek, K., and Watnick, P.I. (2003) Environmental determinants of Vibrio cholerae biofilm development. Appl Environ Microbiol 69: 5079-5088. https://doi.org/10.1128/aem.69.9.5079-5088.2003.
Kim, J.H., Lee, J., Hong, S., Lee, S., Na, H.Y., Jeong, Y.I., et al. (2018) Cholera outbreak due to raw seafood consumption in South Korea, 2016. Am J Trop Med Hyg 99: 168-170. https://doi.org/10.4269/ajtmh.17-0646.
Klaenhammer, T.R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12: 39-85. https://doi.org/10.1111/j.1574-6976.1993.tb00012.x.
Labbate, M., Orata, F.D., Petty, N.K., Jayatilleke, N.D., King, W.L., Kirchberger, P.C., et al. (2016) A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Sci Rep 6: 36891. https://doi.org/10.1038/srep36891.
Le Roux, F., and Blokesch, M. (2018) Eco-evolutionary dynamics linked to horizontal gene transfer in Vibrios. Annu Rev Microbiol 72: 89-110. https://doi.org/10.1146/annurev-micro-090817-062148.
Lin, H.V., Massam-Wu, T., Lin, C.P., Wang, Y.A., Shen, Y.C., Lu, W.J., et al. (2017) The Vibrio cholerae var regulon encodes a metallo-beta-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor. PLoS One 12: e0184255. https://doi.org/10.1371/journal.pone.0184255.
Losada, L., Shea, A.A., and DeShazer, D. (2018) A MarR family transcriptional regulator and subinhibitory antibiotics regulate type VI secretion gene clusters in Burkholderia pseudomallei. Microbiology (Reading) 164: 1196-1211. https://doi.org/10.1099/mic.0.000697.
Love, L.L., Chassy, B.M., and Krichevsky, M.I. (1973) Growth of Dictyostelium discoideum in the presence of antibiotics. Antimicrob Agents Chemother 3: 310-313. https://doi.org/10.1128/aac.3.2.310.
Lutz, C., Erken, M., Noorian, P., Sun, S., and McDougald, D. (2013) Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front Microbiol 4: 375. https://doi.org/10.3389/fmicb.2013.00375.
Ma, A.T., McAuley, S., Pukatzki, S., and Mekalanos, J.J. (2009) Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe 5: 234-243. https://doi.org/10.1016/j.chom.2009.02.005.
MacIntyre, D.L., Miyata, S.T., Kitaoka, M., and Pukatzki, S. (2010) The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107: 19520-19524. https://doi.org/10.1073/pnas.1012931107.
Mathieu-Denoncourt, A., Giacomucci, S., and Duperthuy, M. (2021) The secretome of Vibrio cholerae. In Vibrios, Huang, L., and Li, J. (eds). London: IntechOpen. https://doi.org/10.5772/intechopen.96803.
Matson, J.S., Yoo, H.J., Hakansson, K., and Dirita, V.J. (2010) Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J Bacteriol 192: 2044-2052. https://doi.org/10.1128/JB.00023-10.
Metzger, L.C., and Blokesch, M. (2016) Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 30: 1-7. https://doi.org/10.1016/j.mib.2015.10.007.
Miyata, S.T., Kitaoka, M., Brooks, T.M., McAuley, S.B., and Pukatzki, S. (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 79: 2941-2949. https://doi.org/10.1128/IAI.01266-10.
Morris, J.G., Jr. (2003) Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis 37: 272-280. https://doi.org/10.1086/375600.
Nahar, S., Sultana, M., Naser, M.N., Nair, G.B., Watanabe, H., Ohnishi, M., et al. (2011) Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Front Microbiol 2: 260. https://doi.org/10.3389/fmicb.2011.00260.
Palacios, J., Vignolo, G., Farias, M.E., de Ruiz Holgado, A.P., Oliver, G., and Sesma, F. (1999) Purification and amino acid sequence of lactocin 705, a bacteriocin produced by lactobacillus casei CRL 705. Microbiol Res 154: 199-204. https://doi.org/10.1016/S0944-5013(99)80015-9.
Pukatzki, S., Ma, A.T., Revel, A.T., Sturtevant, D., and Mekalanos, J.J. (2007) Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci USA 104: 15508-15513. https://doi.org/10.1073/pnas.0706532104.
Pukatzki, S., Ma, A.T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W.C., et al. (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103: 1528-1533. https://doi.org/10.1073/pnas.0510322103.
Pukatzki, S., McAuley, S.B., and Miyata, S.T. (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12: 11-17. https://doi.org/10.1016/j.mib.2008.11.010.
Rabbani, G.H., and Greenough, W.B., 3rd. (1999) Food as a vehicle of transmission of cholera. J Diarrhoeal Dis Res 17: 1-9.
Racault, M.-F., Abdulaziz, A., George, G., Menon, N., Jasmin, C., Punathil, M., et al. (2019) Environmental reservoirs of Vibrio cholerae: challenges and opportunities for ocean-color remote sensing. Remote Sens 11: 2763. https://www.mdpi.com/2072-4292/11/23/2763.
Ramamurthy, T., Nandy, R.K., Mukhopadhyay, A.K., Dutta, S., Mutreja, A., Okamoto, K., et al. (2020) Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae. Front Cell Infect Microbiol 10: 572096. https://doi.org/10.3389/fcimb.2020.572096.
Rompikuntal, P.K., Vdovikova, S., Duperthuy, M., Johnson, T.L., Ahlund, M., Lundmark, R., et al. (2015) Outer membrane vesicle-mediated export of processed PrtV protease from Vibrio cholerae. PLoS One 10: e0134098. https://doi.org/10.1371/journal.pone.0134098.
Schmitt, P., Rosa, R.D., Duperthuy, M., de Lorgeril, J., Bachere, E., and Destoumieux-Garzon, D. (2012) The antimicrobial defense of the Pacific oyster, Crassostrea gigas. How diversity may compensate for scarcity in the regulation of resident/pathogenic microflora. Front Microbiol 3: 160. https://doi.org/10.3389/fmicb.2012.00160.
Serwecinska, L. (2020) Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 12: 3313. https://doi.org/10.3390/w12123313.
Sikora, A.E., Zielke, R.A., Lawrence, D.A., Andrews, P.C., and Sandkvist, M. (2011) Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem 286: 16555-16566. https://doi.org/10.1074/jbc.M110.211078.
Smith, D.R., Maestre-Reyna, M., Lee, G., Gerard, H., Wang, A.H., and Watnick, P.I. (2015) In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment. Proc Natl Acad Sci USA 112: 10491-10496. https://doi.org/10.1073/pnas.1512424112.
Syngkon, A., Elluri, S., Koley, H., Rompikuntal, P.K., Saha, D.R., Chakrabarti, M.K., et al. (2010) Studies on a novel serine protease of a DeltahapADeltaprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One 5: e13122. https://doi.org/10.1371/journal.pone.0013122.
Unterweger, D., Kitaoka, M., Miyata, S.T., Bachmann, V., Brooks, T.M., Moloney, J., et al. (2012) Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages. PLoS One 7: e48320. https://doi.org/10.1371/journal.pone.0048320.
Van der Henst, C., Vanhove, A.S., Drebes Dorr, N.C., Stutzmann, S., Stoudmann, C., Clerc, S., et al. (2018) Molecular insights into Vibrio cholerae's intra-amoebal host-pathogen interactions. Nat Commun 9: 3460. https://doi.org/10.1038/s41467-018-05976-x.
Vettiger, A., and Basler, M. (2016) Type VI secretion system substrates are transferred and reused among sister cells. Cell 167: 99-110 e112. https://doi.org/10.1016/j.cell.2016.08.023.
Wang, J., Zhou, Z., He, F., Ruan, Z., Jiang, Y., Hua, X., and Yu, Y. (2018) The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLoS One 13: e0192288. https://doi.org/10.1371/journal.pone.0192288.
Watnick, P.I., Fullner, K.J., and Kolter, R. (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181: 3606-3609. https://doi.org/10.1128/JB.181.11.3606-3609.1999.
Wells, J.M., Brummer, R.J., Derrien, M., MacDonald, T.T., Troost, F., Cani, P.D., et al. (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 312: G171-G193. https://doi.org/10.1152/ajpgi.00048.2015.
Williams, S.G., Varcoe, L.T., Attridge, S.R., and Manning, P.A. (1996) Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun 64: 283-289. https://doi.org/10.1128/IAI.64.1.283-289.1996.
Wong, E., Vaaje-Kolstad, G., Ghosh, A., Hurtado-Guerrero, R., Konarev, P.V., Ibrahim, A.F., et al. (2012) The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8: e1002373. https://doi.org/10.1371/journal.ppat.1002373.
Yin, J., Wang, G., Cheng, D., Fu, J., Qiu, J., and Yu, Z. (2019) Inactivation of Polymyxin by hydrolytic mechanism. Antimicrob Agents Chemother 63: e02378-18. https://doi.org/10.1128/AAC.02378-18.
Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., et al. (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608-1615. https://doi.org/10.1093/bioinformatics/btq249.
Zhao, W., Caro, F., Robins, W., and Mekalanos, J.J. (2018) Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359: 210-213. https://doi.org/10.1126/science.aap8775.
Zheng, J., Ho, B., and Mekalanos, J.J. (2011) Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 6: e23876. https://doi.org/10.1371/journal.pone.0023876.