High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins.
Aeromonadaceae
/ chemistry
Antifreeze Proteins
/ chemistry
Bacterial Proteins
/ chemistry
Basidiomycota
/ chemistry
Crystallization
Granulovirus
/ chemistry
Hydrophobic and Hydrophilic Interactions
Ice
Isomerism
Molecular Dynamics Simulation
Protein Binding
Protein Conformation
Surface Properties
Temperature
Journal
The journal of physical chemistry letters
ISSN: 1948-7185
Titre abrégé: J Phys Chem Lett
Pays: United States
ID NLM: 101526034
Informations de publication
Date de publication:
16 Sep 2021
16 Sep 2021
Historique:
pubmed:
8
9
2021
medline:
28
9
2021
entrez:
7
9
2021
Statut:
ppublish
Résumé
Antifreeze proteins (AFPs) can bind to ice nuclei thereby inhibiting their growth and their hydration shell is believed to play a fundamental role. Here, we use molecular dynamics simulations to characterize the hydration shell of four moderately-active and four hyperactive AFPs. The local water density around the ice-binding-surface (IBS) is found to be lower than that around the non-ice-binding surface (NIBS) and this difference correlates with the higher hydrophobicity of the former. While the water-density increase (with respect to bulk) around the IBS is similar between moderately-active and hyperactive AFPs, it differs around the NIBS, being higher for the hyperactive AFPs. We hypothesize that while the lower water density at the IBS can pave the way to protein binding to ice nuclei, irrespective of the antifreeze activity, the higher density at the NIBS of the hyperactive AFPs contribute to their enhanced ability in inhibiting ice growth around the bound AFPs.
Identifiants
pubmed: 34491750
doi: 10.1021/acs.jpclett.1c01855
pmc: PMC8450935
doi:
Substances chimiques
Antifreeze Proteins
0
Bacterial Proteins
0
Ice
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8777-8783Références
Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8266-8271
pubmed: 29987018
J Am Chem Soc. 2008 Oct 1;130(39):13066-73
pubmed: 18774821
Biophys J. 2003 Oct;85(4):2599-605
pubmed: 14507722
Annu Rev Biochem. 2016 Jun 2;85:515-42
pubmed: 27145844
J Am Chem Soc. 2010 Sep 8;132(35):12210-1
pubmed: 20712311
Trends Biochem Sci. 2014 Nov;39(11):548-55
pubmed: 25440715
J Chem Phys. 2014 Aug 7;141(5):055103
pubmed: 25106616
J Biol Chem. 2013 Apr 26;288(17):12295-304
pubmed: 23486477
Structure. 2002 May;10(5):619-27
pubmed: 12015145
J Phys Chem B. 2019 Sep 26;123(38):8010-8018
pubmed: 31513398
J Phys Chem B. 2012 Oct 11;116(40):12113-24
pubmed: 22998120
J Comput Chem. 2005 Dec;26(16):1701-18
pubmed: 16211538
Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9360-5
pubmed: 22645341
J Phys Chem B. 2019 Aug 1;123(30):6474-6480
pubmed: 31280567
Proteins. 2005 May 1;59(2):266-74
pubmed: 15726609
J Phys Chem B. 2018 Oct 11;122(40):9389-9398
pubmed: 30222341
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1617-22
pubmed: 23277543
Biochem J. 2016 Nov 1;473(21):4011-4026
pubmed: 27613857
Nature. 2000 Jul 20;406(6793):322-4
pubmed: 10917536
Nature. 1995 Jun 1;375(6530):427-31
pubmed: 7760940
Cryobiology. 2005 Dec;51(3):262-80
pubmed: 16140290
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5423-8
pubmed: 20215465
J Phys Chem Lett. 2017 Feb 2;8(3):611-614
pubmed: 28085291
Phys Chem Chem Phys. 2020 Apr 14;22(14):7340-7347
pubmed: 32211621
Biophys J. 2008 Jul;95(1):333-41
pubmed: 18339740
Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5378-83
pubmed: 11959992
J Phys Chem B. 2020 Jun 11;124(23):4686-4696
pubmed: 32425044
Biophys Chem. 2004 Apr 1;109(1):137-48
pubmed: 15059666
Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2267-72
pubmed: 9482874
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):13252-13257
pubmed: 30530650
Phys Chem Chem Phys. 2015 Dec 14;17(46):31270-7
pubmed: 26549621
J Mol Biol. 2001 Jan 26;305(4):875-89
pubmed: 11162099
J Chem Phys. 2014 Dec 14;141(22):22D529
pubmed: 25494800
J Biol Chem. 2002 Sep 6;277(36):33349-52
pubmed: 12105229
Biophys J. 1993 Jan;64(1):252-9
pubmed: 8431545
J Am Chem Soc. 2019 May 15;141(19):7887-7898
pubmed: 31020830
J Phys Chem B. 2014 May 8;118(18):4743-52
pubmed: 24725212
Biochem J. 2008 Apr 1;411(1):171-80
pubmed: 18095937
J Phys Chem B. 2008 May 15;112(19):6193-202
pubmed: 18336017
Phys Chem Chem Phys. 2010 Sep 21;12(35):10189-97
pubmed: 20668761
Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589-93
pubmed: 267952
J Chem Phys. 2007 Jan 7;126(1):014101
pubmed: 17212484
J Am Chem Soc. 2011 Apr 6;133(13):4882-8
pubmed: 21405120
J Comput Chem. 2003 Dec;24(16):1999-2012
pubmed: 14531054