Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation.

Antibiotic Hydroxyl radicals Peroxymonosulfate activation Persulfate activation Sulfate radicals

Journal

Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769

Informations de publication

Date de publication:
Feb 2022
Historique:
received: 18 01 2021
accepted: 20 08 2021
pubmed: 9 9 2021
medline: 27 1 2022
entrez: 8 9 2021
Statut: ppublish

Résumé

Oxytetracycline (OTC) is a broad-spectrum antibiotic that resists biodegradation and poses a risk to the ecosystem. This study investigated the degradation of OTC by heat-activated peroxydisulfate (PDS) and peroxymonosulfate (PMS) processes. Response surface methodology (RSM) was used to evaluate the effect of process parameters, namely initial pH, oxidant concentration, temperature, and reaction time on the OTC removal efficiency. According to the results of the RSM models, all four independent variables were significant for both PDS and PMS processes. The optimum process parameters for the heat-activated PDS process were pH 8.9, PDS concentration 3.9 mM, temperature 72.9°C, and reaction time 26.5 min. For the heat-activated PMS process, optimum conditions were pH 9.0, PMS concentration 4.0 mM, temperature 75.0°C, and reaction time 20.0 min. The predicted OTC removal efficiencies for the PDS and PMS processes were 89.7% and 84.0%, respectively. As a result of the validation experiments conducted at optimum conditions, the obtained OTC removal efficiencies for the PDS and PMS processes were 87.6 ± 4.2 and 80.2± 4.6, respectively. PDS process has higher kinetic constants at all pH values than the PMS process. Both processes were effective in OTC removal from aqueous solution and RSM was efficient in process optimization.

Identifiants

pubmed: 34495474
doi: 10.1007/s11356-021-16157-7
pii: 10.1007/s11356-021-16157-7
doi:

Substances chimiques

Peroxides 0
Sulfates 0
Water Pollutants, Chemical 0
peroxymonosulfate 22047-43-4
Oxytetracycline X20I9EN955

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9110-9123

Subventions

Organisme : h2020 marie skłodowska-curie actions
ID : 898422

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Aleboyeh A, Daneshvar N, Kasiri MB (2008) Optimization of CI Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Process Process Intensif 47:827–832
doi: 10.1016/j.cep.2007.01.033
Ao X, Sun W, Li S, Yang C, Li C, Lu Z (2019) Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: influencing factors, degradation pathways, and toxicity evaluation. Chem Eng J 361:1053–1062. https://doi.org/10.1016/j.cej.2018.12.133
doi: 10.1016/j.cej.2018.12.133
Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A Chem 202:142–153
doi: 10.1016/j.jphotochem.2008.11.019
Asaithambi P, Aziz ARA, Daud WMABW (2016) Integrated ozone-electrocoagulation process for the removal of pollutant from industrial effluent: optimization through response surface methodology. Chem Eng Process Process Intensif 105:92–102
doi: 10.1016/j.cep.2016.03.013
Bashir MJK, Mau Han T, Jun Wei L, Choon Aun N, Abu Amr SS (2016) Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process. Water Sci Technol 73:2704–2712. https://doi.org/10.2166/wst.2016.123
doi: 10.2166/wst.2016.123
Bi W, Wu Y, Dong W (2020) The degradation of oxytetracycline with low concentration of persulfate sodium motivated by copper sulphate under simulated solar light. Chem Eng J 393:122782. https://doi.org/10.1016/j.cej.2019.122782
doi: 10.1016/j.cej.2019.122782
Bilgin Oncu N, Mercan N, Akmehmet Balcioglu I (2015) The impact of ferrous iron/heat-activated persulfate treatment on waste sewage sludge constituents and sorbed antimicrobial micropollutants. Chem Eng J 259:972–980. https://doi.org/10.1016/J.CEJ.2014.08.066
doi: 10.1016/J.CEJ.2014.08.066
Darvishmotevalli M, Zarei A, Moradnia M, Noorisepehr M, Mohammadi H (2019) Optimization of saline wastewater treatment using electrochemical oxidation process: prediction by RSM method. MethodsX 6:1101–1113
doi: 10.1016/j.mex.2019.03.015
El Hadki A, Ulucan-Altuntas K, El Hadki H, Ustundag CB, Kabbaj OK, Dahchour A et al (2021) Removal of oxytetracycline by graphene oxide and Boron-doped reduced graphene oxide: a combined density function theory, molecular dynamics simulation and experimental study. FlatChem 27:100238. https://doi.org/10.1016/J.FLATC.2021.100238
doi: 10.1016/J.FLATC.2021.100238
Figueiredo Filho DB, Júnior JAS, Rocha EC (2011) What is R2 all about? Leviathan (São Paulo):60–68
Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428
doi: 10.1021/es1013714
Ghanbari F, Moradi M, Manshouri M (2014) Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper. J Environ Chem Eng 2:1846–1851
doi: 10.1016/j.jece.2014.08.003
Guo R, Nengzi LC, Chen Y, Song Q, Gou J, Cheng X (2020a) Construction of high-efficient visible photoelectrocatalytic system for carbamazepine degradation: kinetics, degradation pathway and mechanism. Chin Chem Lett 31:2661–2667. https://doi.org/10.1016/j.cclet.2020.03.068
doi: 10.1016/j.cclet.2020.03.068
Guo R, Wang Y, Li J, Cheng X, Dionysiou DD (2020b) Sulfamethoxazole degradation by visible light assisted peroxymonosulfate process based on nanohybrid manganese dioxide incorporating ferric oxide. Appl Catal B Environ 278:119297. https://doi.org/10.1016/j.apcatb.2020.119297
doi: 10.1016/j.apcatb.2020.119297
Ji Y, Shi Y, Dong W, Wen X, Jiang M, Lu J (2016) Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem Eng J 298:225–233. https://doi.org/10.1016/j.cej.2016.04.028
doi: 10.1016/j.cej.2016.04.028
Karimifard S, Moghaddam MRA (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640:772–797
doi: 10.1016/j.scitotenv.2018.05.355
Khataee AR, Fathinia M, Aber S, Zarei M (2010) Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: intermediates identification. J Hazard Mater 181:886–897. https://doi.org/10.1016/j.jhazmat.2010.05.096
doi: 10.1016/j.jhazmat.2010.05.096
Kiaee N, Aghaie-Khafri M (2014) Optimization of gas tungsten arc welding process by response surface methodology. Mater Des 54:25–31
doi: 10.1016/j.matdes.2013.08.032
Kuehl ROO (2000) Designs of experiments: statistical principles of research design and analysis. Duxbury Press
Kumar Subramani A, Rani P, Wang PH, Chen BY, Mohan S, Chang CT (2019) Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa. J Environ Chem Eng 7:103215. https://doi.org/10.1016/j.jece.2019.103215
doi: 10.1016/j.jece.2019.103215
Lai W, Xie G, Dai R, Kuang C, Xu Y, Pan Z, Zheng L, Yu L, Ye S, Chen Z, Li H (2020) Kinetics and mechanisms of oxytetracycline degradation in an electro-Fenton system with a modified graphite felt cathode. J Environ Manag 257:109968. https://doi.org/10.1016/j.jenvman.2019.109968
doi: 10.1016/j.jenvman.2019.109968
Lee Y, Lo S, Kuo J, Hsieh C (2012) Decomposition of perfluorooctanoic acid by microwaveactivated persulfate: effects of temperature, pH, and chloride ions. Front Environ Sci Eng 6:17–25
doi: 10.1007/s11783-011-0371-x
Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, Tsang DCW (2020) Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: mechanisms and pathway. Environ Res 183:109156. https://doi.org/10.1016/j.envres.2020.109156
doi: 10.1016/j.envres.2020.109156
Liang C, Bruell CJ, Marley MC, Sperry KL (2004) Persulfate oxidation for in situ remediation of TCE. I Activated by ferrous ion with and without a persulfate--thiosulfate redox couple. Chemosphere 55:1213–1223
doi: 10.1016/j.chemosphere.2004.01.029
Liu D, Li M, Li X, Ren F, Sun P, Zhou L (2020) Core-shell Zn/Co MOFs derived Co3O4/CNTs as an efficient magnetic heterogeneous catalyst for persulfate activation and oxytetracycline degradation. Chem Eng J 387:124008. https://doi.org/10.1016/j.cej.2019.124008
doi: 10.1016/j.cej.2019.124008
Liu J, Zhong S, Song Y, Wang B, Zhang F (2018a) Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation. J Electroanal Chem 809:74–79
doi: 10.1016/j.jelechem.2017.12.033
Liu Y, He X, Duan X, Fu Y, Fatta-Kassinos D, Dionysiou DD (2016a) Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: kinetics and mechanism. Water Res 95:195–204. https://doi.org/10.1016/j.watres.2016.03.011
doi: 10.1016/j.watres.2016.03.011
Liu Y, He X, Fu Y, Dionysiou DD (2016b) Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. J Hazard Mater 305:229–239. https://doi.org/10.1016/j.jhazmat.2015.11.043
doi: 10.1016/j.jhazmat.2015.11.043
Liu Y, Wang Y, Wang Q, Pan J, Zhang J (2018b) Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS). Chemosphere 190:431–441
doi: 10.1016/j.chemosphere.2017.10.020
Majumdar A, Pal A (2020) Optimized synthesis of Bi4NbO8Cl perovskite nanosheets for enhanced visible light assisted photocatalytic degradation of tetracycline antibiotics. J Environ Chem Eng 8:103645. https://doi.org/10.1016/j.jece.2019.103645
doi: 10.1016/j.jece.2019.103645
Malakootian M, Ahmadian M (2019) Ciprofloxacin removal by electro-activated persulfate in aqueous solution using iron electrodes. Appl Water Sci 9:1–10
doi: 10.1007/s13201-019-1024-7
Malakotian M, Asadzadeh SN, Khatami M, Ahmadian M, Heidari MR, Karimi P, Firouzeh N, Varma RS (2019) Protocol encompassing ultrasound/Fe3O4 nanoparticles/persulfate for the removal of tetracycline antibiotics from aqueous environments. Clean Techn Environ Policy 21:1665–1674. https://doi.org/10.1007/s10098-019-01733-w
doi: 10.1007/s10098-019-01733-w
Maran JP, Manikandan S, Thirugnanasambandham K, Nivetha CV, Dinesh R (2013) Box--Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr Polym 92:604–611
doi: 10.1016/j.carbpol.2012.09.020
Matzek LW, Carter KE (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055
doi: 10.1016/j.chemosphere.2016.02.055
Milh H, Cabooter D, Dewil R (2021) Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation: radical identification and elucidation of the degradation mechanism. Chem Eng J 130457
Myers RH (1999) Response surface methodology—current status and future directions. J Qual Technol 31:30–44
doi: 10.1080/00224065.1999.11979891
Nam SN, Cho H, Han J, Her N, Yoon J (2018) Photocatalytic degradation of acesulfame K: optimization using the Box–Behnken design (BBD). Process Saf Environ Prot 113:10–21. https://doi.org/10.1016/j.psep.2017.09.002
doi: 10.1016/j.psep.2017.09.002
Pan Y, Zhang Y, Zhou M, Cai J, Tian Y (2019) Enhanced removal of emerging contaminants using persulfate activated by UV and pre-magnetized Fe0. Chem Eng J 361:908–918. https://doi.org/10.1016/j.cej.2018.12.135
doi: 10.1016/j.cej.2018.12.135
Rastogi A, Al-Abed SR, Dionysiou DD (2009) Sulfate radical-based ferrous--peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B Environ 85:171–179
doi: 10.1016/j.apcatb.2008.07.010
Santos SCR, Boaventura RAR (2008) Adsorption modelling of textile dyes by sepiolite. Appl Clay Sci 42:137–145
doi: 10.1016/j.clay.2008.01.002
Sathiya P, Ajith PM, Soundararajan R (2013) Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel. J Mech Sci Technol 27:2457–2465
doi: 10.1007/s12206-013-0631-8
Silveira JE, Zazo JA, Pliego G, Bidóia ED, Moraes PB (2015) Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology. Environ Sci Pollut Res 22:5831–5841
doi: 10.1007/s11356-014-3738-2
Ulucan-Altuntas K, Debik E (2020) Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: comparison with nZVI, degradation mechanism, and pathways. Front Environ Sci Eng 14. https://doi.org/10.1007/s11783-019-1196-2
Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environ 430:109–118. https://doi.org/10.1016/j.scitotenv.2012.04.055
doi: 10.1016/j.scitotenv.2012.04.055
Wang J, Wang S (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem Eng J 334:1502–1517. https://doi.org/10.1016/j.cej.2017.11.059
doi: 10.1016/j.cej.2017.11.059
Wang Z, Qiu W, Pang S, Gao Y, Zhou Y, Cao Y, Jiang J (2020) Relative contribution of ferryl ion species (Fe (IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Res 172:115504
doi: 10.1016/j.watres.2020.115504
Whitcomb PJ, Anderson MJ (2004) RSM simplified: optimizing processes using response surface methods for design of experiments. CRC Press
doi: 10.4324/9781482293777
Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box--Behnken experimental design. J Hazard Mater 171:551–562
doi: 10.1016/j.jhazmat.2009.06.035
Zhang H, Nengzi LC, Li X, Wang Z, Li B, Liu L et al (2020) Construction of CuBi2O4/MnO2 composite as Z-scheme photoactivator of peroxymonosulfate for degradation of antibiotics. Chem Eng J 386:124011. https://doi.org/10.1016/j.cej.2020.124011
doi: 10.1016/j.cej.2020.124011
Zhou T, Zou X, Mao J, Wu X (2016) Decomposition of sulfadiazine in a sonochemical Fe0-catalyzed persulfate system: parameters optimizing and interferences of wastewater matrix. Appl Catal B Environ 185:31–41
doi: 10.1016/j.apcatb.2015.12.004

Auteurs

Kubra Ulucan-Altuntas (K)

Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey. kulucan@yildiz.edu.tr.
Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy. kulucan@yildiz.edu.tr.

Senem Yazici Guvenc (S)

Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.

Emine Can-Güven (E)

Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.

Fatih Ilhan (F)

Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.

Gamze Varank (G)

Faculty of Civil Engineering, Department of Environmental Engineering, Yildiz Technical University, Davutpasa, 34220, Istanbul, Turkey.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Lakes Salinity Archaea Bacteria Microbiota
Rivers Turkey Biodiversity Environmental Monitoring Animals

Classifications MeSH