Insufficiency of non-canonical PRC1 synergizes with JAK2V617F in the development of myelofibrosis.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
02 2022
Historique:
received: 22 01 2021
accepted: 26 08 2021
revised: 19 08 2021
pubmed: 10 9 2021
medline: 16 2 2022
entrez: 9 9 2021
Statut: ppublish

Résumé

Insufficiency of polycomb repressive complex 2 (PRC2), which trimethylates histone H3 at lysine 27, is frequently found in primary myelofibrosis and promotes the development of JAK2V617F-induced myelofibrosis in mice by enhancing the production of dysplastic megakaryocytes. Polycomb group ring finger protein 1 (Pcgf1) is a component of PRC1.1, a non-canonical PRC1 that monoubiquitylates H2A at lysine 119 (H2AK119ub1). We herein investigated the impact of PRC1.1 insufficiency on myelofibrosis. The deletion of Pcgf1 in JAK2V617F mice strongly promoted the development of lethal myelofibrosis accompanied by a block in erythroid differentiation. Transcriptome and chromatin immunoprecipitation sequence analyses showed the de-repression of PRC1.1 target genes in Pcgf1-deficient JAK2V617F hematopoietic progenitors and revealed Hoxa cluster genes as direct targets. The deletion of Pcgf1 in JAK2V617F hematopoietic stem and progenitor cells (HSPCs), as well as the overexpression of Hoxa9, restored the attenuated proliferation of JAK2V617F progenitors. The overexpression of Hoxa9 also enhanced JAK2V617F-mediated myelofibrosis. The expression of PRC2 target genes identified in PRC2-insufficient JAK2V617F HSPCs was not largely altered in Pcgf1-deleted JAK2V617F HSPCs. The present results revealed a tumor suppressor function for PRC1.1 in myelofibrosis and suggest that PRC1.1 insufficiency has a different impact from that of PRC2 insufficiency on the pathogenesis of myelofibrosis.

Identifiants

pubmed: 34497325
doi: 10.1038/s41375-021-01402-2
pii: 10.1038/s41375-021-01402-2
doi:

Substances chimiques

Pcgf1 protein, mouse 0
Polycomb Repressive Complex 1 EC 2.3.2.27
Jak2 protein, mouse EC 2.7.10.2
Janus Kinase 2 EC 2.7.10.2
Lysine K3Z4F929H6

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

452-463

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Barbui T, Thiele J, Gisslinger H, Finazzi G, Vannucchi AM, Tefferi A. The 2016 revision of WHO classification of myeloproliferative neoplasms: clinical and molecular advances. Blood Rev. 2016;30:453–9.
doi: 10.1016/j.blre.2016.06.001
Mead AJ, Mullally A. Myeloproliferative neoplasm stem cells. Blood. 2017;129:1607–16.
doi: 10.1182/blood-2016-10-696005
Tefferi A. Primary myelofibrosis: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016 ;91:1262–71.
doi: 10.1002/ajh.24592
Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.
doi: 10.1182/bloodadvances.2016000208
Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.
doi: 10.1182/blood-2016-10-695940
Simon JA, Kingston RE. Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell. 2013;49:808–24.
doi: 10.1016/j.molcel.2013.02.013
Sashida G, Oshima M, Iwama A. Deregulated Polycomb functions in myeloproliferative neoplasms. Int J Hematol. 2019;110:170–8.
doi: 10.1007/s12185-019-02600-6
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.
doi: 10.1038/nature09784
Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.
doi: 10.1038/nm.4036
Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:1459–77.
doi: 10.1084/jem.20151121
Shimizu T, Kubovcakova L, Nienhold R, Zmajkovic J, Meyer SC, Hao-Shen H, et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J Exp Med. 2016;213:1479–96.
doi: 10.1084/jem.20151136
Yang Y, Akada H, Nath D, Hutchison RE, Mohi G. Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood. 2016;127:3410–23.
doi: 10.1182/blood-2015-11-679431
Ueda K, Ikeda K, Ikezoe T, Harada-Shirado K, Ogawa K, Hashimoto Y, et al. Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms. Blood Adv. 2017;1:1001–15.
doi: 10.1182/bloodadvances.2017004457
Dutta A, Hutchison RE, Mohi G. Hmga2 promotes the development of myelofibrosis in Jak2(V617F) knockin mice by enhancing TGF-beta1 and Cxcl12 pathways. Blood. 2017;130:920–32.
doi: 10.1182/blood-2016-12-757344
Pasini D, Malatesta M, Jung HR, Walfridsson J, Willer A, Olsson L, et al. Characterization of an antagonistic switch between histone H3 lysine 27 methylation and acetylation in the transcriptional regulation of Polycomb group target genes. Nucleic Acids Res. 2010;38:4958–69.
doi: 10.1093/nar/gkq244
De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, et al. PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014;514:247–51.
doi: 10.1038/nature13561
Huang X, Yan J, Zhang M, Wang Y, Chen Y, Fu X, et al. Targeting epigenetic crosstalk as a therapeutic strategy for EZH2-aberrant solid tumors. Cell. 2018;175:186–99e19.
doi: 10.1016/j.cell.2018.08.058
Kleppe M, Koche R, Zou L, van Galen P, Hill CE, Dong L, et al. Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms. Cancer Cell. 2018;33:29–43e7.
doi: 10.1016/j.ccell.2017.11.009
Oguro H, Yuan J, Tanaka S, Miyagi S, Mochizuki-Kashio M, Ichikawa H, et al. Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes. J Exp Med. 2012;209:445–54.
doi: 10.1084/jem.20111709
Fujino T, Kitamura T. ASXL1 mutation in clonal hematopoiesis. Exp Hematol. 2020;83:74–84.
doi: 10.1016/j.exphem.2020.01.002
Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22:180–93.
doi: 10.1016/j.ccr.2012.06.032
Scheuermann JC, Alonso AGdA, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, et al. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature. 2010;465:243–7.
doi: 10.1038/nature08966
Guo Y, Zhou Y, Yamatomo S, Yang H, Zhang P, Chen S, et al. ASXL1 alteration cooperates with JAK2V617F to accelerate myelofibrosis. Leukemia. 2019;33:1287–91.
doi: 10.1038/s41375-018-0347-y
van den Boom V, Maat H, Geugien M, Rodriguez Lopez A, Sotoca AM, Jaques J, et al. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 2016;14:332–46.
doi: 10.1016/j.celrep.2015.12.034
Ross K, Sedello AK, Todd GP, Paszkowski-Rogacz M, Bird AW, Ding L, et al. Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood. 2012;119:4152–61.
doi: 10.1182/blood-2011-09-382390
Almeida M, Pintacuda G, Masui O, Koseki Y, Gdula M, Cerase A, et al. PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science. 2017;356:1081–4.
doi: 10.1126/science.aal2512
Shide K, Shimoda H, Kumano T, Karube K, Kameda T, Takenaka K, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22:87–95.
doi: 10.1038/sj.leu.2405043
Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y, et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun. 2014;5:4177.
doi: 10.1038/ncomms5177
Tara S, Isshiki Y, Nakajima-Takagi Y, Oshima M, Aoyama K, Tanaka T, et al. Bcor insufficiency promotes initiation and progression of myelodysplastic syndrome. Blood. 2018;132:2470–83.
doi: 10.1182/blood-2018-01-827964
Aoyama K, Shinoda D, Suzuki E, Nakajima-Takagi Y, Oshima M, Koide S, et al. PRC2 insufficiency causes p53-dependent dyserythropoiesis in myelodysplastic syndrome. Leukemia. 2020. https://doi.org/10.1038/s41375-41020-01023-41371 .
Thiele J, Kvasnicka HM. Grade of bone marrow fibrosis is associated with relevant hematological findings-a clinicopathological study on 865 patients with chronic idiopathic myelofibrosis. Ann Hematol. 2006;85:226–32.
doi: 10.1007/s00277-005-0042-8
Gery S, Gombart AF, Yi WS, Koeffler C, Hofmann W-K, Koeffler HP. Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood. 2005;106:2827–36.
doi: 10.1182/blood-2005-01-0358
Brown AL, Wilkinson CR, Waterman SR, Kok CH, Salerno DG, Diakiw SM, et al. Genetic regulators of myelopoiesis and leukemic signaling identified by gene profiling and linear modeling. J Leukoc Biol. 2006;80:433–47.
doi: 10.1189/jlb.0206112
Chyla BJ, Moreno-Miralles I, Steapleton MA, Thompson MA, Bhaskara S, Engel M, et al. Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol. 2008;28:6234–47.
doi: 10.1128/MCB.00404-08
Oshima M, Hasegawa N, Mochizuki-Kashio M, Muto T, Miyagi S, Koide S, et al. Ezh2 regulates the Lin28/let-7 pathway to restrict activation of fetal gene signature in adult hematopoietic stem cells. Exp Hematol. 2016;44:282–96. e3
doi: 10.1016/j.exphem.2015.12.009
Guglielmelli P, Zini R, Bogani C, Salati S, Pancrazzi A, Bianchi E, et al. Molecular profiling of CD34+ cells in idiopathic myelofibrosis identifies a set of disease-associated genes and reveals the clinical significance of Wilms’ tumor gene 1 (WT1). Stem Cells. 2007;25:165–73.
doi: 10.1634/stemcells.2006-0351
Harada-Shirado K, Ikeda K, Ogawa K, Ohkawara H, Kimura H, Kai T, et al. Dysregulation of the MIRLET7/HMGA2 axis with methylation of the CDKN2A promoter in myeloproliferative neoplasms. Br J Haematol. 2015;168:338–49.
doi: 10.1111/bjh.13129
Thiele J, Braeckel C, Wagner S, Falini B, Dienemann D, Stein H, et al. Macrophages in normal human bone marrow and in chronic myeloproliferative disorders: an immunohistochemical and morphometric study by a new monoclonal antibody (PG-M1) on trephine biopsies. Virchows Arch A. 1992;421:33–39.
doi: 10.1007/BF01607136
Ng AP. I myelofibrosis! Veni VitD! Et tu, macrophage? Blood. 2019;133:1613–5.
doi: 10.1182/blood-2019-02-900779
Wakahashi K, Minagawa K, Kawano Y, Kawano H, Suzuki T, Ishii S, et al. Vitamin D receptor-mediated skewed differentiation of macrophages initiates myelofibrosis and subsequent osteosclerosis. Blood. 2019;133:1619–29.
doi: 10.1182/blood-2018-09-876615
Tefferi A, Lasho TL, Finke C, Gangat N, Hanson CA, Ketterling RP, et al. Prognostic significance of ASXL1 mutation types and allele burden in myelofibrosis. Leukemia. 2018;32:837–9.
doi: 10.1038/leu.2017.318

Auteurs

Daisuke Shinoda (D)

Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Yaeko Nakajima-Takagi (Y)

Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Motohiko Oshima (M)

Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Shuhei Koide (S)

Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Kazumasa Aoyama (K)

Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Atsunori Saraya (A)

Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.

Hironori Harada (H)

Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.

Bahityar Rahmutulla (B)

Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Atsushi Kaneda (A)

Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Kiyoshi Yamaguchi (K)

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Yoichi Furukawa (Y)

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

Haruhiko Koseki (H)

Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.

Kazuya Shimoda (K)

Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Tomoaki Tanaka (T)

Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan.

Goro Sashida (G)

Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.

Atsushi Iwama (A)

Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 03aiwama@ims.u-tokyo.ac.jp.
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan. 03aiwama@ims.u-tokyo.ac.jp.
Laboratoty of Cellular and Molecular Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan. 03aiwama@ims.u-tokyo.ac.jp.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH