Pollinators contribute to the maintenance of flowering plant diversity.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
17
09
2020
accepted:
09
08
2021
pubmed:
10
9
2021
medline:
8
2
2022
entrez:
9
9
2021
Statut:
ppublish
Résumé
Mechanisms that favour rare species are key to the maintenance of diverse communities
Identifiants
pubmed: 34497416
doi: 10.1038/s41586-021-03890-9
pii: 10.1038/s41586-021-03890-9
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
688-692Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).
Wills, C. et al. Nonrandom processes maintain diversity in tropical forests. Science 311, 527–531 (2006).
pubmed: 16439661
doi: 10.1126/science.1117715
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 31, 343–366 (2000).
doi: 10.1146/annurev.ecolsys.31.1.343
Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
doi: 10.1146/annurev-ecolsys-110316-022919
Vamosi, J. C. et al. Pollination decays in biodiversity hotspots. Proc. Natl Acad. Sci. USA 103, 956–961 (2006).
pubmed: 16418284
pmcid: 1347978
doi: 10.1073/pnas.0507165103
Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).
pubmed: 32778648
pmcid: 7417528
doi: 10.1038/s41467-020-17751-y
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
pubmed: 20188434
doi: 10.1016/j.tree.2010.01.007
Vamosi, J. C., Magallon, S., Mayrose, I., Otto, S. P. & Sauquet, H. Macroevolutionary patterns of flowering plant speciation and extinction. Annu. Rev. Plant Biol. 69, 685–706 (2018).
pubmed: 29489399
doi: 10.1146/annurev-arplant-042817-040348
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
doi: 10.1111/j.1600-0706.2010.18644.x
Rodger, J. G. et al. 2021 Widespread vulnerability of plant seed production to pollinator decline. Sci. Adv. (in the press).
Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).
doi: 10.1086/284889
Sargent, R. D. & Ackerly, D. D. Plant–pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).
pubmed: 18262307
doi: 10.1016/j.tree.2007.11.003
Benadi, G. & Pauw, A. Frequency dependence of pollinator visitation rates suggests that pollination niches can allow plant species coexistence. J. Ecol. 106, 1892–1901 (2018).
doi: 10.1111/1365-2745.13025
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
doi: 10.1016/S0169-5347(02)00045-9
Benadi, G., Bluthgen, N., Hovestadt, T. & Poethke, H. J. Population dynamics of plant and pollinator communities: stability reconsidered. Am. Nat. 179, 157–168 (2012).
pubmed: 22218306
doi: 10.1086/663685
Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).
doi: 10.1890/03-0810
Bergamo, P. J., Susin Streher, N., Traveset, A., Wolowski, M. & Sazima, M. Pollination outcomes reveal negative density-dependence coupled with interspecific facilitation among plants. Ecol. Lett. 23, 129–139 (2020).
pubmed: 31650660
doi: 10.1111/ele.13415
Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).
pubmed: 11967552
doi: 10.1038/nrg776
Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).
pubmed: 23624924
doi: 10.3732/ajb.1200496
Moreira-Hernández, J. I. & Muchhala, N. Importance of pollinator-mediated interspecific pollen transfer for angiosperm evolution. Annu. Rev. Ecol. Evol. Syst. 50, 191–217 (2019).
doi: 10.1146/annurev-ecolsys-110218-024804
Ashman, T. L. et al. Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).
doi: 10.1890/03-8024
Tur, C., Saez, A., Traveset, A. & Aizen, M. A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19, 576–586 (2016).
pubmed: 26991916
doi: 10.1111/ele.12594
Levin, D. A. & Anderson, W. W. Competition for pollinators between simultaneously flowering species. Am. Nat. 104, 455–467 (1970).
doi: 10.1086/282680
Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gómez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: complexities, caveats and future directions. Ann. Bot. 125, 1003–1012 (2020).
pubmed: 31985008
pmcid: 7262468
doi: 10.1093/aob/mcaa012
Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 113, 67–79 (1979).
doi: 10.1086/283365
Sargent, R. D. & Otto, S. P. The role of local species abundance in the evolution of pollinator attraction in flowering plants. Am. Nat. 167, 67–80 (2006).
pubmed: 16475100
doi: 10.1086/498433
Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).
pubmed: 23910482
doi: 10.1111/ele.12157
Armbruster, W. S. The specialization continuum in pollination systems: diversity of concepts and implications for ecology, evolution and conservation. Funct. Ecol. 31, 88–100 (2017).
doi: 10.1111/1365-2435.12783
Minnaar, C., Anderson, B., de Jager, M. L. & Karron, J. D. Plant–pollinator interactions along the pathway to paternity. Ann. Bot. 123, 225–245 (2019).
pubmed: 30535041
doi: 10.1093/aob/mcy167
Kantsa, A. et al. Disentangling the role of floral sensory stimuli in pollination networks. Nat. Commun. 9, 1041 (2018).
pubmed: 29531220
pmcid: 5847531
doi: 10.1038/s41467-018-03448-w
Fang, Q. & Huang, S. Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176–1185 (2013).
doi: 10.1890/12-1634.1
pubmed: 23858657
Baldwin, B. G. Origins of plant diversity in the California floristic province. Annu. Rev. Ecol. Evol. Syst. 45, 347–369 (2014).
doi: 10.1146/annurev-ecolsys-110512-135847
Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).
pubmed: 12881488
pmcid: 170927
doi: 10.1073/pnas.1633576100
Thomson, J. D., Fung, H. F. & Ogilvie, J. E. Effects of spatial patterning of co-flowering plant species on pollination quantity and purity. Ann. Bot. 123, 303–310 (2019).
doi: 10.1093/aob/mcy120
pubmed: 29947735
Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).
doi: 10.1038/nature05956
pubmed: 17713534
Song, C. L., Rohr, R. P. & Saavedra, S. Why are some plant–pollinator networks more nested than others? J. Anim. Ecol. 86, 1417–1424 (2017).
doi: 10.1111/1365-2656.12749
pubmed: 28833083
Hegland, S. J., Nielsen, A., Lazaro, A., Bjerknes, A. L. & Totland, O. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
doi: 10.1111/j.1461-0248.2008.01269.x
pubmed: 19049509
Ohlemuller, R. et al. The coincidence of climatic and species rarity: high risk to small-range species from climate change. Biol. Lett. 4, 568–572 (2008).
pubmed: 18664421
pmcid: 2610064
doi: 10.1098/rsbl.2008.0097
Arceo-Gómez, G., Kaczorowski, R. L. & Ashman, T.-L. A network approach to understanding patterns of coflowering in diverse communities. Int. J. Plant Sci. 179, 569–582 (2018).
doi: 10.1086/698712
Koski, M. H. et al. Plant–flower visitor networks in a serpentine metacommunity: assessing traits associated with keystone plant species. Arthropod Plant Interact. 9, 9–21 (2015).
doi: 10.1007/s11829-014-9353-9
Arceo-Gómez, G. et al. Patterns of among- and within-species variation in heterospecific pollen receipt: the importance of ecological generalization. Am. J. Bot. 103, 396–407 (2016).
pubmed: 26507115
doi: 10.3732/ajb.1500155
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
doi: 10.1890/13-0133.1
R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).
Arceo-Gómez, G., Alonso, C., Ashman, T.-L. & Parra-Tabla, V. Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: implications for interpretation of pollen transfer networks. Am. J. Bot. 105, 1601–1608 (2018).
pubmed: 30168577
doi: 10.1002/ajb2.1144
Hayes, R. A., Cullen N., Kaczorowski R. L., O’Neill E. M. & Ashman T-L. A community-wide description and key of pollen from co-flowering plants of the serpentine seeps of Mclaughlin Reserve. Madrono (in the press).
Dafni, A. Pollination Ecology: a Practical Approach (Oxford Univ. Press, 1992).
McMurdie, P. J. & Holmes, S. Waste NOT, want not: why rarefying microbiome data is inadmissible. PLoS Comp. Biol. 10, e1003531 (2014).
doi: 10.1371/journal.pcbi.1003531
Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).
doi: 10.1093/jpe/rtv047
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).
doi: 10.1038/nature12872
pubmed: 24362564
Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).
pubmed: 26385966
pmcid: 4611642
doi: 10.1073/pnas.1423041112
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406
doi: 10.1093/bioinformatics/bty633
Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).
doi: 10.1111/2041-210X.12593
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
Le, S., Josse, J. & Husson, F. FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
doi: 10.18637/jss.v025.i01
Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
Feinsinger, P., Spears, E. E. & Poole, R. W. A simple measure of niche breadth. Ecology 62, 27–32 (1981).
doi: 10.2307/1936664
Horn, H. S. Measurement of "overlap" in comparative ecological studies. Am. Nat. 100, 419–424 (1966).
doi: 10.1086/282436
Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
doi: 10.1111/j.0030-1299.2008.16644.x
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).
Patefield, W. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. Appl. Stat. 30, 91–97 (1981).
doi: 10.2307/2346669
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–5, https://CRAN.R-project.org/package=vegan (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Presented at the Third international AAAI Conference on Weblogs and Social Media (2009).
Arceo-Gómez, G., Kaczorowski, R. L., Patel, C. & Ashman, T. L. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia 189, 1041–1047 (2019).
pubmed: 30877578
doi: 10.1007/s00442-019-04379-z
Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).
pubmed: 27066252
pmcid: 4799788
doi: 10.1002/ece3.2051
Orme, D. et al. caper: comparative analyses of phylogenetics and evolution in R. R package version 1.0.1, https://CRAN.R-project.org/package=caper (2018).
Barrett, S. C. H. The evolution of plant sexual diversity. Nat. Rev. Genet. 3, 274–284 (2002).
pubmed: 11967552
doi: 10.1038/nrg776
Fort, H., Vazquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).
pubmed: 26498731
doi: 10.1111/ele.12535
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-143, https://CRAN.R-project.org/package=nlme (2019).
Lefcheck, J. S. & Freckleton, R. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).
doi: 10.1111/2041-210X.12512
Fox, J. & Weisberg, S. An R companion to Applied Regression, 3rd edition (Sage, 2019).
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).
pubmed: 16907983
pmcid: 1570337
doi: 10.1186/1472-6785-6-9
Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).
doi: 10.1890/12-0976.1
pubmed: 23687881
van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).
pubmed: 29713568
pmcid: 5923215
doi: 10.7717/peerj.4718