Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method.


Journal

Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009

Informations de publication

Date de publication:
03 Sep 2021
Historique:
received: 17 08 2021
revised: 27 08 2021
accepted: 30 08 2021
entrez: 10 9 2021
pubmed: 11 9 2021
medline: 11 11 2021
Statut: epublish

Résumé

Identification of drug-target interactions (DTIs) is vital for drug discovery. However, traditional biological approaches have some unavoidable shortcomings, such as being time consuming and expensive. Therefore, there is an urgent need to develop novel and effective computational methods to predict DTIs in order to shorten the development cycles of new drugs. In this study, we present a novel computational approach to identify DTIs, which uses protein sequence information and the dual-tree complex wavelet transform (DTCWT). More specifically, a position-specific scoring matrix (PSSM) was performed on the target protein sequence to obtain its evolutionary information. Then, DTCWT was used to extract representative features from the PSSM, which were then combined with the drug fingerprint features to form the feature descriptors. Finally, these descriptors were sent to the Rotation Forest (RoF) model for classification. A 5-fold cross validation (CV) was adopted on four datasets (Enzyme, Ion Channel, GPCRs (G-protein-coupled receptors), and NRs (Nuclear Receptors)) to validate the proposed model; our method yielded high average accuracies of 89.21%, 85.49%, 81.02%, and 74.44%, respectively. To further verify the performance of our model, we compared the RoF classifier with two state-of-the-art algorithms: the support vector machine (SVM) and the k-nearest neighbor (KNN) classifier. We also compared it with some other published methods. Moreover, the prediction results for the independent dataset further indicated that our method is effective for predicting potential DTIs. Thus, we believe that our method is suitable for facilitating drug discovery and development.

Identifiants

pubmed: 34500792
pii: molecules26175359
doi: 10.3390/molecules26175359
pmc: PMC8433937
pii:
doi:

Substances chimiques

Enzymes 0
Ion Channels 0
Receptors, Cytoplasmic and Nuclear 0
Receptors, G-Protein-Coupled 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 61722212
Organisme : National Natural Science Foundation of China
ID : 61873212

Références

Sci Transl Med. 2017 Mar 29;9(383):
pubmed: 28356508
J Chem Inf Model. 2010 Jun 28;50(6):1034-41
pubmed: 20578727
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D431-3
pubmed: 14681450
Pac Symp Biocomput. 2012;:410-21
pubmed: 22174296
Curr Drug Targets. 2008 Dec;9(12):1071-6
pubmed: 19128217
Pac Symp Biocomput. 2013;:53-64
pubmed: 23424111
Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082
pubmed: 29126136
J Theor Biol. 2014 Oct 21;359:120-8
pubmed: 24949993
Bioinformatics. 2016 Jun 15;32(12):i18-i27
pubmed: 27307615
Front Chem. 2020 Jan 10;7:895
pubmed: 31998687
Bioinformatics. 2012 Sep 15;28(18):2304-10
pubmed: 22730431
Future Med Chem. 2011 Apr;3(6):735-50
pubmed: 21554079
J Proteome Res. 2017 Apr 7;16(4):1401-1409
pubmed: 28264154
Nucleic Acids Res. 2012 Jan;40(Database issue):D1113-7
pubmed: 22067455
Bioinformatics. 2021 May 5;37(6):830-836
pubmed: 33070179
J Theor Biol. 2016 Aug 7;402:117-28
pubmed: 27164998
PLoS One. 2011;6(7):e22187
pubmed: 21765950
Nat Rev Drug Discov. 2010 Nov;9(11):867-82
pubmed: 21031002
Sci Rep. 2017 Jan 12;7:40376
pubmed: 28079135
Trends Biochem Sci. 1998 Nov;23(11):444-7
pubmed: 9852764
Proc Natl Acad Sci U S A. 1987 Jul;84(13):4355-8
pubmed: 3474607
Methods. 2017 Oct 1;129:81-88
pubmed: 28549952
J Cheminform. 2016 Mar 16;8:15
pubmed: 26985240
Molecules. 2019 May 02;24(9):
pubmed: 31052598
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1596-1607
pubmed: 31689203
Clin Chem. 1993 Apr;39(4):561-77
pubmed: 8472349
Bioinformatics. 2012 Sep 15;28(18):i522-i528
pubmed: 22962476
Curr Med Chem. 2010;17(34):4231-55
pubmed: 20939815
Bioinformatics. 2008 Jul 1;24(13):i232-40
pubmed: 18586719
Nucleic Acids Res. 1999 Jan 1;27(1):29-34
pubmed: 9847135
PLoS Comput Biol. 2012;8(5):e1002503
pubmed: 22589709
PLoS One. 2013 May 07;8(5):e62975
pubmed: 23667553
Nucleic Acids Res. 2012 Jan;40(Database issue):D1128-36
pubmed: 21948793
Nucleic Acids Res. 2008 Jan;36(Database issue):D919-22
pubmed: 17942422
IEEE Trans Pattern Anal Mach Intell. 2006 Oct;28(10):1619-30
pubmed: 16986543
J Comput Biol. 2018 Mar;25(3):361-373
pubmed: 28891684
Int J Mol Sci. 2015 Dec 19;16(12):30343-61
pubmed: 26703574
Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4
pubmed: 18077471
Nucleic Acids Res. 2008 Jan;36(Database issue):D901-6
pubmed: 18048412
Bioinformatics. 2010 Jun 15;26(12):i246-54
pubmed: 20529913
Chem Soc Rev. 2013 Mar 7;42(5):2130-41
pubmed: 23288298
Mol Inform. 2020 May;39(5):e1900062
pubmed: 32003548
BMC Bioinformatics. 2016 Mar 18;17:128
pubmed: 26987649

Auteurs

Jie Pan (J)

School of Information Engineering, Xijing University, Xi'an 710123, China.

Li-Ping Li (LP)

School of Information Engineering, Xijing University, Xi'an 710123, China.

Zhu-Hong You (ZH)

School of Information Engineering, Xijing University, Xi'an 710123, China.

Chang-Qing Yu (CQ)

School of Information Engineering, Xijing University, Xi'an 710123, China.

Zhong-Hao Ren (ZH)

School of Information Engineering, Xijing University, Xi'an 710123, China.

Yao Chen (Y)

School of Information Engineering, Xijing University, Xi'an 710123, China.

Articles similaires

Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin

Classifications MeSH