Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae).


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
03 2022
Historique:
received: 21 04 2021
accepted: 19 08 2021
revised: 11 08 2021
pubmed: 12 9 2021
medline: 12 3 2022
entrez: 11 9 2021
Statut: ppublish

Résumé

Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.

Identifiants

pubmed: 34508228
doi: 10.1038/s41396-021-01102-w
pii: 10.1038/s41396-021-01102-w
pmc: PMC8857208
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

642-654

Informations de copyright

© 2021. The Author(s).

Références

Szathmáry E, Smith JM. The major evolutionary transitions. Nature 1995;374:227–32.
pubmed: 7885442 doi: 10.1038/374227a0
West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.
pubmed: 25964342 pmcid: 4547252 doi: 10.1073/pnas.1421402112
Moran NA. The coevolution of bacterial endosymbionts and phloem-feeding insects. Ann Mo Bot Gard. 2001;88:35–44.
doi: 10.2307/2666130
Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.
pubmed: 25713367 pmcid: 4547261 doi: 10.1073/pnas.1421388112
Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A. Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci USA. 2002;99:4454–8.
pubmed: 11904373 pmcid: 123669 doi: 10.1073/pnas.062067299
Tamames J, Gil R, Latorre A, Pereto J, Silva FJ, Moya A. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol. 2007;7:181.
pubmed: 17908294 pmcid: 2175510 doi: 10.1186/1471-2148-7-181
Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013;153:1567–78.
pubmed: 23791183 doi: 10.1016/j.cell.2013.05.040
Wilson ACC, Duncan RP. Signatures of host/symbiont genome coevolution in insect nutritional endosymbioses. Proc Natl Acad Sci USA. 2015;112:10255–61.
pubmed: 26039986 pmcid: 4547219 doi: 10.1073/pnas.1423305112
von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 2001;412:433–6.
doi: 10.1038/35086563
McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.
pubmed: 19706397 pmcid: 2741262 doi: 10.1073/pnas.0906424106
Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christeller JT. Molecular and histological characterization of primary (Betaproteobacteria) and secondary (Gammaproteobacteria) endosymbionts of three mealybug species. Appl Environ Microbiol. 2012;78:1187–97.
pubmed: 22156418 pmcid: 3273002 doi: 10.1128/AEM.06340-11
Bennett GM, Moran NA. Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol. 2013;5:1675–88.
pubmed: 23918810 pmcid: 3787670 doi: 10.1093/gbe/evt118
Bressan A, Mulligan KL. Localization and morphological variation of three bacteriome-inhabiting symbionts within a planthopper of the genus Oliarus (Hemiptera: Cixiidae): Bacteriome-inhabiting symbionts in Oliarus filicicola. Environ Microbiol Rep. 2013;5:499–505.
pubmed: 23864562 doi: 10.1111/1758-2229.12051
Bennett GM, Mao M. Comparative genomics of a quadripartite symbiosis in a planthopper host reveals the origins and rearranged nutritional responsibilities of anciently diverged bacterial lineages. Environ Microbiol. 2018;20:4461–72.
pubmed: 30047196 doi: 10.1111/1462-2920.14367
von Dohlen CD, Spaulding U, Patch KB, Weglarz KM, Foottit RG, Havill NP, et al. Dynamic acquisition and loss of dual-obligate symbionts in the plant-sap-feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea). Front Microbiol. 2017;8:1037.
doi: 10.3389/fmicb.2017.01037
Mao M, Yang X, Poff K, Bennett G. Comparative genomics of the dual-obligate symbionts from the treehopper, Entylia carinata (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Genome Biol Evol. 2017;9:1803–15.
pubmed: 28854637 pmcid: 5533117 doi: 10.1093/gbe/evx134
McCutcheon JP, Moran NA. Functional convergence in reduced genomes of bacterial symbionts spanning 200 my of evolution. Genome Biol Evol. 2010;2:708–18.
pubmed: 20829280 pmcid: 2953269 doi: 10.1093/gbe/evq055
McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.
pubmed: 21835622 pmcid: 3169327 doi: 10.1016/j.cub.2011.06.051
Sloan DB, Moran NA. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol. 2012;29:3781–92.
pubmed: 22821013 pmcid: 3494270 doi: 10.1093/molbev/mss180
Hall AAG, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, et al. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol. 2016;18:2591–603.
pubmed: 27114069 doi: 10.1111/1462-2920.13351
Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson A-S, Wernegreen JJ, et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 2002;296:2376–9.
pubmed: 12089438 doi: 10.1126/science.1071278
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 2000;407:81–6.
pubmed: 10993077 doi: 10.1038/35024074
Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol. 2005;71:8802–10.
pubmed: 16332876 pmcid: 1317441 doi: 10.1128/AEM.71.12.8802-8810.2005
Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae). Appl Environ Microbiol. 2010;76:7521–5.
pubmed: 20851962 pmcid: 2976180 doi: 10.1128/AEM.01354-10
Koga R, Moran NA. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J. 2014;8:1237–46.
pubmed: 24401857 pmcid: 4030230 doi: 10.1038/ismej.2013.235
Mao M, Bennett GM. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 2020;14:1384–95.
pubmed: 32076126 pmcid: 7242365 doi: 10.1038/s41396-020-0616-4
Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL. Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol. 2003;1:e21.
pubmed: 14551917 pmcid: 212699 doi: 10.1371/journal.pbio.0000021
Weglarz KM, Havill NP, Burke GR, von Dohlen CD. Partnering with a pest: genomes of hemlock woolly adelgid symbionts reveal atypical nutritional provisioning patterns in dual-obligate bacteria. Genome Biol Evol. 2018;10:1607–21.
pubmed: 29860412 pmcid: 6022629 doi: 10.1093/gbe/evy114
Toenshoff ER, Penz T, Narzt T, Collingro A, Schmitz-Esser S, Pfeiffer S, et al. Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae). ISME J 2012;6:384–96.
pubmed: 21833037 doi: 10.1038/ismej.2011.102
Toenshoff ER, Gruber D, Horn M. Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts. Environ Microbiol. 2012;14:1284–95.
pubmed: 22364314 doi: 10.1111/j.1462-2920.2012.02712.x
Toenshoff ER, Szabó G, Gruber D, Horn M. The pine bark adelgid, Pineus strobi, contains two novel bacteriocyte-associated gammaproteobacterial symbionts. Appl Environ Microbiol. 2014;80:878–85.
pubmed: 24271164 pmcid: 3911223 doi: 10.1128/AEM.03310-13
von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C, Hoover K. Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and introduced range. Environ Microbiol. 2013;15:2043–62.
doi: 10.1111/1462-2920.12102
Havelka J, Danilov J, Rakauskas R. Relationships between aphid species of the family Adelgidae (Hemiptera Adelgoidea) and their endosymbiotic bacteria: a case study in Lithuania. Bull Insectology. 2021;74:1–10.
Favret C, Havill NP, Miller GL, Sano M, Victor B. Catalog of the adelgids of the world (Hemiptera, Adelgidae). Zookeys 2015;534:35–54.
doi: 10.3897/zookeys.534.6456
Blackman RL, Eastop VF Aphids on the world’s trees: an identification and information guide. 1994. CAB International.
Havill NP, Foottit RG. Biology and evolution of Adelgidae. Ann Rev Ento. 2007;52:325–49.
doi: 10.1146/annurev.ento.52.110405.091303
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end read mergeR. Bioinformatics 2014;30:614–20.
pubmed: 24142950 doi: 10.1093/bioinformatics/btt593
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Bio. 2012;19:455–77.
doi: 10.1089/cmb.2012.0021
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.
pubmed: 25409509 pmcid: 4237348 doi: 10.1371/journal.pone.0112963
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.
pubmed: 30936562 doi: 10.1038/s41587-019-0072-8
Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies. F1000Research. 2017;6:1287.
doi: 10.12688/f1000research.12232.1
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578–9.
pubmed: 21149342 doi: 10.1093/bioinformatics/btq683
Chu C, Li X, Wu Y. GAPPadder: a sensitive approach for closing gaps on draft genomes with short sequence reads. BMC Genomics. 2019;20:426.
pubmed: 31167639 pmcid: 6551238 doi: 10.1186/s12864-019-5703-4
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–9.
pubmed: 24642063 doi: 10.1093/bioinformatics/btu153
Varani AM, Siguier P, Gourbeyre E, Charneau V, Chandler M. ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes. Genome Biol. 2011;12:R30.
pubmed: 21443786 pmcid: 3129680 doi: 10.1186/gb-2011-12-3-r30
Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20:1085–93.
pubmed: 29447345 doi: 10.1093/bib/bbx085
Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, et al. The EcoCyc database. EcoSal Plus. 2018;8:10.1128.
doi: 10.1128/ecosalplus.ESP-0006-2018
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.
pubmed: 17526522 pmcid: 1933193 doi: 10.1093/nar/gkm321
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.
pubmed: 28460117 pmcid: 5850834 doi: 10.1093/molbev/msx148
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36.
pubmed: 10592175 pmcid: 102395 doi: 10.1093/nar/28.1.33
Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49–e49.
pubmed: 22217600 pmcid: 3326336 doi: 10.1093/nar/gkr1293
Xu L, Dong Z, Fang L, Luo Y, Wei Z, Guo H, et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47:W52–W58.
pubmed: 31053848 pmcid: 6602458 doi: 10.1093/nar/gkz333
Xu Y, Bi C, Wu G, Wei S, Dai X, Yin T, et al. VGSC: a web-based vector graph toolkit of genome synteny and collinearity. Biomed Res Int. 2016;2016:7823429.
pubmed: 27006949 pmcid: 4783527
Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:5575–99.
pubmed: 27620848 doi: 10.1099/ijsem.0.001485
Guy L. phyloSkeleton: taxon selection, data retrieval and marker identification for phylogenomics. Bioinformatics 2017;33:1230–2.
pubmed: 28057682 pmcid: 5408842 doi: 10.1093/bioinformatics/btw824
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
pubmed: 22039361 pmcid: 3197634 doi: 10.1371/journal.pcbi.1002195
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–3.
pubmed: 19505945 pmcid: 2712344 doi: 10.1093/bioinformatics/btp348
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.
pubmed: 24451623 pmcid: 3998144 doi: 10.1093/bioinformatics/btu033
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62:611–5.
pubmed: 23564032 doi: 10.1093/sysbio/syt022
Husník F, Chrudimský T, Hypša V. Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biology. 2011;9:1–17.
doi: 10.1186/1741-7007-9-87
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.
pubmed: 31727128 pmcid: 6857279 doi: 10.1186/s13059-019-1832-y
Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol. 2018;20:2142–59.
pubmed: 29633519 doi: 10.1111/1462-2920.14130
Burke GR, Normark BB, Favret C, Moran NA. Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol. 2009;75:5328–35.
pubmed: 19542349 pmcid: 2725466 doi: 10.1128/AEM.00717-09
Manzano‐Marín A, Szabó G, Simon J, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co‐obligate secondary endosymbionts within Lachninae aphids: co-obligate endosymbiont dynamics in the Lachninae. Environ Microbiol. 2017;19:393–408.
pubmed: 27902872 doi: 10.1111/1462-2920.13633
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
pubmed: 10742046 doi: 10.1093/oxfordjournals.molbev.a026334
ggplot2. Create elegant data visualisations using the grammar of graphics. https://ggplot2.tidyverse.org/ . Accessed Apr 2021.
Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biol Evol. 2015;7:2871–84.
pubmed: 26454017 pmcid: 4684696 doi: 10.1093/gbe/evv188
Janda JM, Abbott SL. The genus Hafnia: from soup to nuts. Clin Microbiol Rev. 2006;19:12–18.
pubmed: 16418520 pmcid: 1360275 doi: 10.1128/CMR.19.1.12-28.2006
Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M Evolutionary recent dual obligatory symbiosis among adelgids indicates a transition between fungus and insect associated lifestyles. bioRxiv. 2020; e-pub ahead of print 16 October 2020; https://doi.org/10.1101/2020.10.16.342642 .
Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol. 2010;19:249–58.
pubmed: 20482655 doi: 10.1111/j.1365-2583.2009.00942.x
Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol. 2014;31:857–71.
pubmed: 24398322 pmcid: 3969561 doi: 10.1093/molbev/msu004
Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23:1473–96.
pubmed: 23952067 doi: 10.1111/mec.12421
Manzano-Marı́n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 2020;14:259–73.
doi: 10.1038/s41396-019-0533-6
Lo W-S, Huang Y-Y, Kuo C-H. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 2016;40:855–74.
pubmed: 28204477 pmcid: 5091035 doi: 10.1093/femsre/fuw028
Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K, Hattori M, et al. Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res. 2006;16:149–56.
pubmed: 16365377 pmcid: 1361709 doi: 10.1101/gr.4106106
Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature 2001;409:1007–11.
pubmed: 11234002 doi: 10.1038/35059006
Moran NA, Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014;68:195–215.
pubmed: 24995872 doi: 10.1146/annurev-micro-091213-112901
Bennett GM, McCutcheon JP, MacDonald BR, Romanovicz D, Moran NA. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 2014;5:e01697–14.
pubmed: 25271287 pmcid: 4196230 doi: 10.1128/mBio.01697-14
Degnan PH, Ochman H, Moran NA. Sequence conservation and functional constraint on intergenic spacers in reduced genomes of the obligate symbiont Buchnera. PLoS Genet. 2011;7:e1002252.
pubmed: 21912528 pmcid: 3164680 doi: 10.1371/journal.pgen.1002252
Van Leuven JT, Meister RC, Simon C, McCutcheon JP. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 2014;158:1270–80.
pubmed: 25175626 doi: 10.1016/j.cell.2014.07.047
Gomez-Valero L. The evolutionary fate of nonfunctional DNA in the bacterial endosymbiont Buchnera aphidicola. Mol Biol Evol. 2004;21:2172–81.
pubmed: 15317875 doi: 10.1093/molbev/msh232
Manzano-Marı́n A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C, Barbe V, et al. A freeloader? The highly eroded yet large genome of the Serratia symbiotica symbiont of Cinara strobi. Genome Biol Evol. 2018;10:2178–89.
pubmed: 30102395 pmcid: 6125246 doi: 10.1093/gbe/evy173
Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol Evol. 2017;9:2893–910.
pubmed: 29036401 pmcid: 5737371 doi: 10.1093/gbe/evx202
Havill NP, Foottit RG, von Dohlen CD. Evolution of host specialization in the Adelgidae (Insecta: Hemiptera) inferred from molecular phylogenetics. Mol Phylogenet. 2007;44:357–70.
doi: 10.1016/j.ympev.2006.11.008
Manzano-Marı́n A, Latorre A. Snapshots of a shrinking partner: genome reduction in Serratia symbiotica. Sci Rep. 2016;6:32590.
pubmed: 27599759 pmcid: 5013485 doi: 10.1038/srep32590
Monnin D, Jackson R, Kiers ET, Bunker M, Ellers J, Henry LM. Parallel evolution in the integration of a co-obligate aphid symbiosis. Curr Biol. 2020;30:1949–57. e6
pubmed: 32243856 doi: 10.1016/j.cub.2020.03.011
Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA. 2016;113:e5416–24.
pubmed: 27573819 pmcid: 5027413 doi: 10.1073/pnas.1603910113
Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.
pubmed: 18983256 doi: 10.1146/annurev.genet.41.110306.130119
Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, et al. Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol. 2010;12:2060–9.
pubmed: 21966902 pmcid: 2955975
Burke GR, Moran NA. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol Evol. 2011;3:195–208.
pubmed: 21266540 pmcid: 3056288 doi: 10.1093/gbe/evr002
Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, et al. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol. 1991;173:6321–4.
pubmed: 1917864 pmcid: 208962 doi: 10.1128/jb.173.20.6321-6324.1991
Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc B 1993;253:167–71.
doi: 10.1098/rspb.1993.0098
Kuechler SM, Gibbs G, Burckhardt D, Dettner K, Hartung V. Diversity of bacterial endosymbionts and bacteria-host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae). Environ Microbiol. 2013;15:2031–42.
pubmed: 23452253 doi: 10.1111/1462-2920.12101
Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P. Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol. 2000;66:2898–905.
pubmed: 10877784 pmcid: 92089 doi: 10.1128/AEM.66.7.2898-2905.2000
Thao ML, Baumann P. Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol. 2004;70:3401–6.
pubmed: 15184137 pmcid: 427722 doi: 10.1128/AEM.70.6.3401-3406.2004
Meseguer AS, Manzano-Marín A, Coeur d’Acier A, Clamens AL, Godefroid M, Jousselin E. Buchnera has changed flatmate but the repeated replacement of co-obligate symbionts is not associated with the ecological expansions of their aphid hosts. Mol Ecol. 2017;26:2363–78.
pubmed: 27862540 doi: 10.1111/mec.13910
McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.
pubmed: 18048332 pmcid: 2148300 doi: 10.1073/pnas.0708855104
Rao Q, Rollat-Farnier PA, Zhu DT, Santos-Garcia D, Silva FJ, Moya A, et al. Genome reduction and potential metabolic complementation of the dual endosymbionts in the whitefly Bemisia tabaci. BMC Genomics. 2015;16:226.
pubmed: 25887812 pmcid: 4438442 doi: 10.1186/s12864-015-1379-6
Rosenblueth M, Sayavedra L, Sámano-Sánchez H, Roth A, Martínez-Romero E. Evolutionary relationships of flavobacterial and enterobacterial endosymbionts with their scale insect hosts (Hemiptera: Coccoidea). J Evol Biol. 2012;25:2357–68.
pubmed: 22994649 doi: 10.1111/j.1420-9101.2012.02611.x
Michalik K, Szklarzewicz T, Kalandyk-Kołodziejczyk M, Jankowska W, Michalik A. Bacteria belonging to the genus Burkholderia are obligatory symbionts of the eriococcids Acanthococcus aceris Signoret, 1875 and Gossyparia spuria (Modeer, 1778) (Insecta, Hemiptera, Coccoidea). Arthropod Struct Dev. 2016;45:265–72.
pubmed: 27109514 doi: 10.1016/j.asd.2016.04.002
Van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, et al. Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA. 2003;100:581–6.
pubmed: 12522265 pmcid: 141039 doi: 10.1073/pnas.0235981100
Vogel KJ, Moran NA. Effect of host genotype on symbiont titer in the aphid-Buchnera symbiosis. Insects 2011;2:423–34.
pubmed: 26467737 pmcid: 4553553 doi: 10.3390/insects2030423
Bennett GM, McCutcheon JP, McDonald BR, Moran NA. Lineage-specific patterns of genome deterioration in obligate symbionts of sharpshooter leafhoppers. Genome Biol Evol. 2015;8:296–301.
pubmed: 26260652 pmcid: 4758232 doi: 10.1093/gbe/evv159
Havill NP, Griffin BP, Andersen JC, Foottit RG, Justesen MJ, Caccone A, et al. Species delimitation and invasion history of the balsam woolly adelgid, Adelges (Dreyfusia) piceae (Hemiptera: Aphidoidea: Adelgidae), species complex. Syst Entomol. 2021;46:186–204.
doi: 10.1111/syen.12456

Auteurs

Dustin T Dial (DT)

Department of Entomology, University of Georgia, Athens, Georgia.

Kathryn M Weglarz (KM)

Department of Biology, Utah State University, Logan, Utah, USA.
Biology Department, Westfield State University, Westfield, Massachusetts, USA.

Akintunde O Aremu (AO)

Department of Entomology, University of Georgia, Athens, Georgia.

Nathan P Havill (NP)

USDA Forest Service, Northern Research Station, Hamden, Connecticut, USA.

Taylor A Pearson (TA)

Department of Entomology, University of Georgia, Athens, Georgia.

Gaelen R Burke (GR)

Department of Entomology, University of Georgia, Athens, Georgia. grburke@uga.edu.

Carol D von Dohlen (CD)

Department of Biology, Utah State University, Logan, Utah, USA. carol.vondohlen@usu.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH