Cell cycle control in cancer.
Journal
Nature reviews. Molecular cell biology
ISSN: 1471-0080
Titre abrégé: Nat Rev Mol Cell Biol
Pays: England
ID NLM: 100962782
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
accepted:
21
07
2021
pubmed:
12
9
2021
medline:
24
2
2022
entrez:
11
9
2021
Statut:
ppublish
Résumé
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Identifiants
pubmed: 34508254
doi: 10.1038/s41580-021-00404-3
pii: 10.1038/s41580-021-00404-3
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
74-88Subventions
Organisme : Cancer Research UK
ID : 20147
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K015826/1
Pays : United Kingdom
Organisme : Cancer Research UK
ID : C1529/A23335
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_EX_G0800785
Pays : United Kingdom
Informations de copyright
© 2021. Springer Nature Limited.
Références
Kops, G. J. P. L., Foltz, D. R. & Cleveland, D. W. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc. Natl Acad. Sci. USA 101, 8699–8704 (2004).
pubmed: 15159543
pmcid: 423258
Pennycook, B. R. & Barr, A. R. Restriction point regulation at the crossroads between quiescence and cell proliferation. FEBS Lett. 54, 2046–2060 (2020).
Rubin, S. M., Sage, J. & Skotheim, J. M. Integrating old and new paradigms of G1/S control. Mol. Cell 80, 183–192 (2020).
pubmed: 32946743
pmcid: 7582788
Técher, H., Koundrioukoff, S., Nicolas, A. & Debatisse, M. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat. Rev. Genet. 18, 535–550 (2017).
pubmed: 28714480
Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).
pubmed: 31263220
pmcid: 7315405
Malumbres, M. Cyclin-dependent kinases. Genome Biol. 15, 122 (2014).
pubmed: 25180339
pmcid: 4097832
Musacchio, A. The molecular biology of spindle assembly checkpoint signaling dynamics. Curr. Biol. 2, R1002–R1018 (2015).
Fisher, R. P. The CDK network: linking cycles of cell division and gene expression. Genes Cancer 3, 731–738 (2012).
pubmed: 23634260
pmcid: 3636752
Simmons Kovacs, L. A., Orlando, D. A. & Haase, S. B. Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators. Cell Cycle 7, 2626–2629 (2008).
pubmed: 18758238
Morgan, D. O. The Cell Cycle: Principles of Control (New Science Press, 2007).
Bertoli, C., Skotheim, J. M. & De Bruin, R. A. M. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14, 518–528 (2013).
pubmed: 23877564
pmcid: 4569015
Johnson, A. & Skotheim, J. M. Start and the restriction point. Curr. Opin. Cell Biol. 25, 717–723 (2013).
pubmed: 23916770
Bertoli, C. & De Bruin, R. A. M. Turning cell cycle entry on its head. eLife 2014, e03475 (2014).
Caillot, M. et al. Cyclin D1 targets hexokinase 2 to control aerobic glycolysis in myeloma cells. Oncogenesis 9, 68 (2020).
pubmed: 32709889
pmcid: 7381668
Sanidas, I. et al. A code of mono-phosphorylation modulates the function of RB. Mol. Cell 73, 985–1000.e6 (2019).
pubmed: 30711375
pmcid: 6424368
Narasimha, A. M. et al. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife 3, e02872 (2014). Narashima et al. show that cyclin D–CDK4/6 monophosphorylates RB and contrary to the dogma this does not compromise its inhibitory function of E2F-dependent transcription to initiate S phase entry, but it maintains cells in a cell cycle state, preventing their exit.
pmcid: 4076869
Topacio, B. R. et al. Cyclin D-Cdk4,6 drives cell-cycle progression via the retinoblastoma protein’s C-terminal helix. Mol. Cell 74, 758–770.e4 (2019).
pubmed: 30982746
pmcid: 6800134
Zerjatke, T. et al. Quantitative cell cycle analysis based on an endogenous all-in-one reporter for cell tracking and classification. Cell Rep. 19, 1953–1966 (2017).
pubmed: 28564611
pmcid: 5464964
Chung, M. et al. Transient hysteresis in CDK4/6 activity underlies passage of the restriction point in G1. Mol. Cell 76, 562–573.e4 (2019).
pubmed: 31543423
pmcid: 7189330
Yang, H. W. et al. Stress-mediated exit to quiescence restricted by increasing persistence in cdk4/6 activation. eLife 9, e44571 (2020).
pubmed: 32255427
pmcid: 7213986
Cappell, S. D. et al. EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle. Nature 558, 313–317 (2018).
pubmed: 29875408
pmcid: 6035873
Barr, A. R., Heldt, F. S., Zhang, T., Bakal, C. & Novák, B. A dynamical framework for the all-or-none G1/S transition. Cell Syst. 2, 27–37 (2016).
pubmed: 27136687
pmcid: 4802413
Crncec, A. & Hochegger, H. Triggering mitosis. FEBS Lett. 593, 2868–2888 (2019).
pubmed: 31602636
Hégarat, N. et al. Cyclin a triggers mitosis either via the greatwall kinase pathway or cyclin B. EMBO J. 39, e104419 (2020).
pubmed: 32350921
pmcid: 7265243
Ha, S. H. & Ferrell, J. E. Thresholds and ultrasensitivity from negative cooperativity. Science 352, 990–993 (2016).
pubmed: 27174675
pmcid: 5184821
Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).
pubmed: 18669648
pmcid: 2504835
Blethrow, J. D., Glavy, J. S., Morgan, D. O. & Shokat, K. M. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl Acad. Sci. USA 105, 1442–1447 (2008).
pubmed: 18234856
pmcid: 2234163
Joukov, V. & De Nicolo, A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci. Signal. 11, eaar4195 (2018).
pubmed: 30108183
Kettenbach, A. N. et al. Quantitative phosphoproteomics identifies substrates and functional modules of aurora and polo-like kinase activities in mitotic cells. Sci. Signal. 4, rs5 (2011).
pubmed: 21712546
Gavet, O. & Pines, J. Progressive activation of cyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell 18, 533–543 (2010).
pubmed: 20412769
pmcid: 3325599
Taubenberger, A. V., Baum, B. & Matthews, H. K. The mechanics of mitotic cell rounding. Front. Cell Dev. Biol. 8, 687 (2020).
pubmed: 32850812
pmcid: 7423972
Agircan, F. G., Schiebel, E. & Mardin, B. R. Separate to operate: control of centrosome positioning and separation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130461 (2014).
pubmed: 25047615
pmcid: 4113105
Gavet, O. & Pines, J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J. Cell Biol. 189, 247–259 (2010).
pubmed: 20404109
pmcid: 2856909
Santos, S. D. M., Wollman, R., Meyer, T. & Ferrell, J. E. Spatial positive feedback at the onset of mitosis. Cell 149, 1500–1513 (2012).
pubmed: 22726437
pmcid: 3395376
Pines, J. & Hunter, T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 115, 1–17 (1991).
pubmed: 1717476
Hara, M. & Fukagawa, T. Kinetochore assembly and disassembly during mitotic entry and exit. Curr. Opin. Cell Biol. 52, 73–81 (2018).
pubmed: 29477052
Foley, E. A. & Kapoor, T. M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14, 25–37 (2013).
pubmed: 23258294
pmcid: 3762224
Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–147 (2001).
pubmed: 11285280
pmcid: 2185534
Elzen, N. Den & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).
Yamano, H. APC/C: current understanding and future perspectives. F1000Res. https://doi.org/10.12688/f1000research.18582.1 (2019).
doi: 10.12688/f1000research.18582.1
pubmed: 31164978
pmcid: 6534075
Holder, J., Poser, E. & Barr, F. A. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett. 593, 2908–2924 (2019).
pubmed: 31494926
Luo, S. & Tong, L. Structural biology of the separase–securin complex with crucial roles in chromosome segregation. Curr. Opin. Struct. Biol. 49, 114–122 (2018).
pubmed: 29452922
pmcid: 5915870
Vukušić, K., Buđa, R. & Tolić, I. M. Force-generating mechanisms of anaphase in human cells. J. Cell Sci. 132, jcs231985 (2019).
pubmed: 31527150
Green, A. R., Paluch, E. & Oegema, K. Cytokinesis in animal cells. Annu. Rev. Cell Dev. Biol. 28, 29–58 (2012).
pubmed: 22804577
Huang, R.-X. & Zhou, P.-K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal. Transduct. Target. Ther. 5, 60 (2020).
pubmed: 32355263
pmcid: 7192953
Matsuoka, S. et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316, 1160–1166 (2007).
pubmed: 17525332
Bensimon, A. et al. ATM-dependent and -independent dynamics of the nuclear phosphoproteome after DNA damage. Sci. Signal. 3, rs3 (2010).
pubmed: 21139141
Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000).
pubmed: 10673501
pmcid: 316358
Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).
pubmed: 10710310
Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev. 14, 278–288 (2000).
pubmed: 10673500
pmcid: 316357
Reinhardt, H. C. & Yaffe, M. B. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr. Opin. Cell Biol. 21, 245–255 (2009).
pubmed: 19230643
pmcid: 2699687
Brandsma, I. & Gent, D. C. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr. 3, 9 (2012).
pubmed: 23181949
pmcid: 3557175
Janssen, A. & Medema, R. H. Genetic instability: tipping the balance. Oncogene 32, 4459–4470 (2013).
pubmed: 23246960
Hafner, A., Bulyk, M. L., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210 (2019).
pubmed: 30824861
Zeman, M. K. & Cimprich, K. A. Causes and consequences of replication stress. Nat. Cell Biol. 16, 2–9 (2014).
pubmed: 24366029
pmcid: 4354890
Herlihy, A. E. & de Bruin, R. A. M. The role of the transcriptional response to DNA replication stress. Genes 8, 92 (2017).
pmcid: 5368696
Kotsantis, P., Petermann, E. & Boulton, S. J. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 8, 537–555 (2018).
pubmed: 29653955
pmcid: 5935233
Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).
pubmed: 11544175
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078 (2009).
pubmed: 19847258
pmcid: 2906700
McGowan, C. H. & Russell, P. The DNA damage response: sensing and signaling. Curr. Opin. Cell Biol. 16, 629–633 (2004).
pubmed: 15530773
Zhang, Y. & Hunter, T. Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer 134, 1013–1023 (2014).
pubmed: 23613359
Rothblum-Oviatt, C. J., Ryan, C. E. & Piwnica-Worms, H. 14-3-3 binding regulates catalytic activity of human Wee1 kinase. Cell Growth Differ. 12, 581–589 (2001).
pubmed: 11751453
Lee, J., Kumagai, A. & Dunphy, W. G. Positive regulation of Wee1 by Chk1 and 14-3-3 proteins. Mol. Biol. Cell 12, 551–563 (2001).
pubmed: 11251070
pmcid: 30963
Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001).
pubmed: 11484058
Feijoo, C. et al. Activation of mammalian Chk1 during DNA replication arrest: a role for Chk1 in the intra-S phase checkpoint monitoring replication origin firing. J. Cell Biol. 154, 913–924 (2001).
pubmed: 11535615
pmcid: 1255922
Tercero, J. A. & Diffley, J. F. X. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).
pubmed: 11484057
Zachos, G., Rainey, M. D. & Gillespie, D. A. F. Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO J. 22, 713–723 (2003).
pubmed: 12554671
pmcid: 140744
Petermann, E. et al. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol. Cell. Biol. 26, 3319–3326 (2006).
pubmed: 16581803
pmcid: 1446959
Katsuno, Y. et al. Cyclin A–Cdk1 regulates the origin firing program in mammalian cells. Proc. Natl Acad. Sci. USA 106, 3184–3189 (2009).
pubmed: 19221029
pmcid: 2651338
Petermann, E., Woodcock, M. & Helleday, T. Chk1 promotes replication fork progression by controlling replication initiation. Proc. Natl Acad. Sci. USA 107, 16090–16095 (2010).
pubmed: 20805465
pmcid: 2941317
Conti, C., Seiler, J. A. & Pommier, Y. The mammalian DNA replication elongation checkpoint: implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses. Cell Cycle 6, 2760–2767 (2007).
pubmed: 17986860
Dimitrova, D. S. & Gilbert, D. M. Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nat. Cell Biol. 2, 686–694 (2000).
pubmed: 11025658
pmcid: 1255923
Yan, S. & Michael, W. M. TopBP1 and DNA polymerase α-mediated recruitment of the 9-1-1 complex to stalled replication forks: implications for a replication restart-based mechanism for ATR checkpoint activation. Cell Cycle 8, 2877–2884 (2009).
pubmed: 19652550
El-shemerly, M., Hess, D., Pyakurel, A. K., Moselhy, S. & Ferrari, S. ATR-dependent pathways control hEXO1 stability in response to stalled forks. Nucleic Acids Res. 36, 511–519 (2008).
pubmed: 18048416
Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779–789 (2002).
pubmed: 12526805
Trenz, K., Smith, E., Smith, S. & Costanzo, V. ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. EMBO J. https://doi.org/10.1038/sj.emboj.7601045 (2006).
doi: 10.1038/sj.emboj.7601045
pubmed: 16601701
pmcid: 1440833
Hayward, D., Alfonso-Pérez, T. & Gruneberg, U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett. 593, 2889–2907 (2019).
pubmed: 31469407
Grieco, D. & Serpico, A. F. Recent advances in understanding the role of Cdk1 in the spindle assembly checkpoint. F1000Res. https://doi.org/10.12688/f1000research.21185.1 (2020).
doi: 10.12688/f1000research.21185.1
pubmed: 32047615
pmcid: 6993828
Yamaguchi, M. et al. Cryo-EM of mitotic checkpoint complex-bound APC/C reveals reciprocal and conformational regulation of ubiquitin ligation. Mol. Cell 63, 593–607 (2016).
pubmed: 27522463
pmcid: 5148128
Alfieri, C. et al. Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature 536, 431–436 (2016).
pubmed: 27509861
pmcid: 5019344
Sudakin, V., Chan, G. K. T. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol. 154, 925–936 (2001).
pubmed: 11535616
pmcid: 2196190
Liu, S.-T. & Zhang, H. The mitotic checkpoint complex (MCC): looking back and forth after 15 years. AIMS Mol. Sci. 3, 597–634 (2016).
pubmed: 28920074
pmcid: 5597056
Kapanidou, M., Curtis, N. L. & Bolanos-Garcia, V. M. Cdc20: at the crossroads between chromosome segregation and mitotic exit. Trends Biochem. Sci. 42, 193–205 (2017).
pubmed: 28202332
Liu, D., Vader, G., Vromans, M. J. M., Lampson, M. A. & Lens, S. M. A. Sensing chromosome bi-orientation by spatial separation of Aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009).
pubmed: 19150808
pmcid: 2713345
Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).
pubmed: 7642709
Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).
pubmed: 18656424
Vitale, I., Manic, G., Castedo, M. & Kroemer, G. Caspase 2 in mitotic catastrophe: the terminator of aneuploid and tetraploid cells. Mol. Cell. Oncol. 4, e1299274 (2017).
pubmed: 28616577
pmcid: 5462511
Cheng, B. & Crasta, K. Consequences of mitotic slippage for antimicrotubule drug therapy. Endocr. Relat. Cancer 24, T97–T106 (2017).
pubmed: 28684541
Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin b destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).
pubmed: 16782009
pmcid: 2749311
Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).
pubmed: 16222300
Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).
pubmed: 20123995
pmcid: 2819684
Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337.e10 (2018).
pubmed: 29625050
pmcid: 6070353
Lecona, E. & Fernandez-Capetillo, O. Targeting ATR in cancer. Nat. Rev. Cancer 18, 586–595 (2018).
pubmed: 29899559
Ghelli Luserna Di Rorà, A., Cerchione, C., Martinelli, G. & Simonetti, G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J. Hematol. Oncol. 13, 1–17 (2020).
Peyressatre, M., Prével, C., Pellerano, M. & Morris, M. C. Targeting cyclin-dependent kinases in human cancers: from small molecules to peptide inhibitors. Cancers 7, 179–237 (2015).
pubmed: 25625291
pmcid: 4381256
Liu, K. et al. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int. 20, 1–16 (2020).
pubmed: 31908598
pmcid: 6941273
Pérez de Castro, I., de Cárcer, G. & Malumbres, M. A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis 28, 899–912 (2007).
pubmed: 17259655
Bates, M. et al. Too MAD or not MAD enough: the duplicitous role of the spindle assembly checkpoint protein MAD2 in cancer. Cancer Lett. 469, 11–21 (2020).
pubmed: 31593803
Wang, L. et al. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther. 151, 141–151 (2015).
pubmed: 25850036
pmcid: 4457591
Xie, Y. et al. Mps1/TTK: a novel target and biomarker for cancer. J. Drug Target. 25, 112–118 (2017).
pubmed: 27819146
Borah, N. A. & Reddy, M. M. Aurora kinase B inhibition: a potential therapeutic strategy for cancer. Molecules 26, 1981 (2021).
pubmed: 33915740
pmcid: 8037052
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
pubmed: 21376230
Zilfou, J. T. & Lowe, S. W. Tumor suppressive functions of p53. Cold Spring Harb. Perspect. Biol. 1, a001883 (2009).
pubmed: 20066118
pmcid: 2773645
Chen, J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb. Perspect. Med. 6, a026104 (2016).
pubmed: 26931810
pmcid: 4772082
Chen, H. Z., Tsai, S. Y. & Leone, G. Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat. Rev. Cancer 9, 785–797 (2009).
pubmed: 19851314
pmcid: 3616489
Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638–642 (2006). Di Micco et al. show that deregulated DNA replication, due to oncogene activation, triggers DNA damage response and cell cycle exit through senescence, establishing the concept of oncogene-induced replication stress driving cancer initiation.
pubmed: 17136094
Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006).
pubmed: 17136093
Jones, R. M. et al. Increased replication initiation and conflicts with transcription underlie cyclin E-induced replication stress. Oncogene 32, 3744–3753 (2013).
pubmed: 22945645
Bester, A. C. et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145, 435–446 (2011). Bester et al. show that replication stress is an early event in cancer development and fuels genome instability, establishing the role of oncogene-induced replication stress in cancer initiation.
pubmed: 21529715
pmcid: 3740329
Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).
pubmed: 17597761
Swanton, C. et al. Chromosomal instability determines taxane response. Proc. Natl Acad. Sci. USA 106, 8671–8676 (2009).
pubmed: 19458043
pmcid: 2688979
Lee, A. J. X. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71, 1858–1870 (2011).
pubmed: 21363922
pmcid: 3059493
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
pubmed: 22397650
pmcid: 4878653
Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013). Burrell et al. show that replication stress can cause CIN in cancer cells.
pubmed: 23446422
pmcid: 4636055
Lecona, E. & Fernández-Capetillo, O. Replication stress and cancer: it takes two to tango. Exp. Cell Res. 329, 26–34 (2014).
pubmed: 25257608
pmcid: 4878650
Wilhelm, T., Said, M. & Naim, V. DNA replication stress and chromosomal instability: dangerous liaisons. Genes (Basel) 11, 642 (2020).
Bartek, J., Bartkova, J. & Lukas, J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26, 7773–7779 (2007).
pubmed: 18066090
Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864–870 (2005).
pubmed: 15829956
Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005).
pubmed: 15829965
Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).
pubmed: 29622463
pmcid: 6028190
Boveri, T. Concerning the origin of malignant tumours by Theodor Boveri. Translated and annotated by Henry Harris. J. Cell Sci. 121, 1–84 (2008).
pubmed: 18089652
Ganem, N. J. & Pellman, D. Linking abnormal mitosis to the acquisition of DNA damage. J. Cell Biol. 199, 871–881 (2012).
pubmed: 23229895
pmcid: 3518222
Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 (1998).
pubmed: 9521327
Ryan, S. D. et al. Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc. Natl Acad. Sci. USA 109, E2205–E2214 (2012).
pubmed: 22778409
pmcid: 3421180
Hernando, E. et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430, 797–802 (2004).
pubmed: 15306814
Yuan, B. et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin. Cancer Res. 12, 405–410 (2006).
pubmed: 16428479
Sarkar, S. et al. Mitotic checkpoint defects: en route to cancer and drug resistance. Chromosom. Res. 29, 131–144 (2021).
Sisken, J. E., Bonner, S. V., Grasch, S. D., Powell, D. E. & Donaldson, E. S. Alterations in metaphase durations in cells derived from human tumours. Cell Prolif. 18, 137–146 (1985).
Therman, E., Buchler, D. A., Nieminen, U. & Timonen, S. Mitotic modifications and aberrations in human cervical cancer. Cancer Genet. Cytogenet. 11, 185–197 (1984).
pubmed: 6692339
Kwiatkowski, N. et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6, 359–368 (2010).
pubmed: 20383151
pmcid: 2857554
Stolz, A. et al. Pharmacologic abrogation of the mitotic spindle checkpoint by an indolocarbazole discovered by cellular screening efficiently kills cancer cells. Cancer Res. 69, 3874–3883 (2009).
pubmed: 19366805
Siri, S. O., Martino, J. & Gottifredi, V. Structural chromosome instability: types, origins, consequences, and therapeutic opportunities. Cancers (Basel) 13, 3056 (2021).
Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).
pubmed: 21960636
Bakhoum, S. F., Kabeche, L., Murnane, J. P., Zaki, B. I. & Compton, D. A. DNA-damage response during mitosis induces whole-chromosome missegregation. Cancer Discov. 4, 1281–1289 (2014).
pubmed: 25107667
pmcid: 4221427
Funk, L. C., Zasadil, L. M. & Weaver, B. A. Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression. Dev. Cell 39, 638–652 (2016).
pubmed: 27997823
pmcid: 5204306
Sansregret, L. & Swanton, C. The role of aneuploidy in cancer evolution. Cold Spring Harb. Perspect. Med. 7, 1–18 (2017).
Silk, A. D. et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc. Natl Acad. Sci. USA 110, E4134–E4141 (2013).
pubmed: 24133140
pmcid: 3816416
Zasadil, L. M. et al. High rates of chromosome missegregation suppress tumor progression but do not inhibit tumor initiation. Mol. Biol. Cell 27, 1981–1989 (2016).
pubmed: 27146113
pmcid: 4927272
Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).
pubmed: 21270108
pmcid: 3096721
Roylance, R. et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomarkers Prev. 20, 2183–2194 (2011).
pubmed: 21784954
pmcid: 3199437
Sansregret, L. et al. APC/C dysfunction limits excessive cancer chromosomal instability. Cancer Discov. 7, 218–233 (2017). Sansregret et al. show that strengthening the SAC (by APC/C partial depletion) and prolonging mitosis prevents chromosome segregation errors in mitosis and guards against excessive genome instability in cancer cells.
pubmed: 28069571
pmcid: 5300100
Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. G. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 15, 166–180 (2015).
pubmed: 25709118
Mukherjee, S. The Emperor of All Maladies: A Biography of Cancer (Scribner, 2010).
Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).
pubmed: 19238148
Wagner, V. & Gil, J. Senescence as a therapeutically relevant response to CDK4/6 inhibitors. Oncogene 39, 5165–5176 (2020).
pubmed: 32541838
pmcid: 7610384
Wang, C. et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature 574, 268–272 (2019).
pubmed: 31578521
pmcid: 6858884
Whittaker, S. R., Mallinger, A., Workman, P. & Clarke, P. A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther. 173, 83–105 (2017).
pubmed: 28174091
pmcid: 6141011
Sánchez-Martínez, C., Lallena, M. J., Sanfeliciano, S. G. & de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: recent advances (2015–2019). Bioorg. Med.Chem. Lett. 29, 126637 (2019).
pubmed: 31477350
Choi, Y. J. & Anders, L. Signaling through cyclin D-dependent kinases. Oncogene 33, 1890–1903 (2014).
pubmed: 23644662
Álvarez-Fernández, M. & Malumbres, M. Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell 37, 514–529 (2020).
pubmed: 32289274
Spring, L. M. et al. Cyclin-dependent kinase 4 and 6 inhibitors for hormone receptor-positive breast cancer: past, present, and future. Lancet 395, 817–827 (2020).
pubmed: 32145796
Guiley, K. Z. et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science 366, eaaw2106 (2019).
pubmed: 31831640
pmcid: 7592119
Persky, N. S. et al. Defining the landscape of ATP-competitive inhibitor resistance residues in protein kinases. Nat. Struct. Mol. Biol. 27, 92–104 (2020).
pubmed: 31925410
Schade, A. E., Oser, M. G., Nicholson, H. E. & DeCaprio, J. A. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene 38, 4962–4976 (2019).
pubmed: 30833638
pmcid: 6586519
Ruscetti, M. et al. NK cell–mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018).
pubmed: 30573629
pmcid: 6711172
Ruscetti, M. et al. Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 181, 424–441.e21 (2020).
pubmed: 32234521
pmcid: 7278897
Christensen, C. L. et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell 26, 909–922 (2014).
pubmed: 25490451
pmcid: 4261156
Patel, H. et al. ICEC0942, an orally bioavailable selective inhibitor of CDK7 for cancer treatment. Mol. Cancer Ther. 17, 1156 LP–1151166 (2018).
Greenall, S. A. et al. Cyclin-dependent kinase 7 is a therapeutic target in high-grade glioma. Oncogenesis 6, e336 (2017).
pubmed: 28504693
pmcid: 5523066
Eliades, P. et al. High MITF expression is associated with super-enhancers and suppressed by CDK7 inhibition in melanoma. J. Invest. Dermatol. 138, 1582–1590 (2018).
pubmed: 29408204
pmcid: 6019629
Zhong, L., Yang, S., Jia, Y. & Lei, K. Inhibition of cyclin-dependent kinase 7 suppresses human hepatocellular carcinoma by inducing apoptosis. J. Cell. Biochem. 119, 9742–9751 (2018).
pubmed: 30145799
Cao, X. et al. Targeting super-enhancer-driven oncogenic transcription by CDK7 inhibition in anaplastic thyroid carcinoma. Thyroid 29, 809–823 (2019).
pubmed: 30924726
Lu, P. et al. THZ1 reveals CDK7-dependent transcriptional addictions in pancreatic cancer. Oncogene 38, 3932–3945 (2019).
pubmed: 30692639
Zhong, S., Zhang, Y., Yin, X. & Di, W. CDK7 inhibitor suppresses tumor progression through blocking the cell cycle at the G2/M phase and inhibiting transcriptional activity in cervical cancer. Onco. Targets. Ther. 12, 2137–2147 (2019).
pubmed: 30962695
pmcid: 6434917
Zhang, Y. et al. The covalent CDK7 inhibitor THZ1 potently induces apoptosis in multiple myeloma cells in vitro and in vivo. Clin. Cancer Res. 25, 6195–6205 (2019).
pubmed: 31358538
pmcid: 6801078
Schachter, M. M. & Fisher, R. P. The CDK-activating kinase Cdk7. Cell Cycle 12, 3239–3240 (2013).
pubmed: 24036541
pmcid: 3885630
Sava, G. P., Fan, H., Coombes, R. C., Buluwela, L. & Ali, S. CDK7 inhibitors as anticancer drugs. Cancer Metastasis Rev. 39, 805–823 (2020).
pubmed: 32385714
pmcid: 7497306
Barr, A. R. et al. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nat. Commun. 8, 14728 (2017).
pubmed: 28317845
pmcid: 5364389
Shiohara, M., Koike, K., Komiyama, A. & Koeffler, H. P. p21WAF1 mutations and human malignancies. Leuk. Lymphoma 26, 35–41 (1997).
pubmed: 9250785
Hirai, H. et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther. 8, 2992–3000 (2009).
pubmed: 19887545
Matheson, C. J., Backos, D. S. & Reigan, P. Targeting WEE1 kinase in cancer. Trends Pharmacol. Sci. 37, 872–881 (2016).
pubmed: 27427153
Moens, S. et al. The mitotic checkpoint is a targetable vulnerability of carboplatin-resistant triple negative breast cancers. Sci. Rep. 11, 3176 (2021).
pubmed: 33542435
pmcid: 7862668
Shamloo, B. & Usluer, S. p21 in cancer research. Cancers (Basel) 11, 1178 (2019).
Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015).
pubmed: 25621662
Murga, M. et al. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011). Murga et al. show that inhibition of ATR and CHK1 can kill cells with oncogene-induced replication stress, establishing that targeting the replication stress response can selectively kill cancer.
pubmed: 22120667
pmcid: 4894468
Toledo, L. I., Murga, M. & Fernandez-Capetillo, O. Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol. Oncol. 5, 368–373 (2011).
pubmed: 21820372
pmcid: 3590794
Toledo, L. I. et al. A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations. Nat. Struct. Mol. Biol. 18, 721–727 (2011).
pubmed: 21552262
pmcid: 4869831
León, T. E. et al. EZH2-deficient T-cell acute lymphoblastic leukemia is sensitized to CHK1 Inhibition through enhanced replication stress. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-19-0789 (2020).
doi: 10.1158/2159-8290.CD-19-0789
pubmed: 32349972
pmcid: 7611258
Rogers, R. F. et al. CHK1 inhibition is synthetically lethal with loss of B-family DNA polymerase function in human lung and colorectal cancer cells. Cancer Res. 80, 1735–1747 (2020).
pubmed: 32161100
pmcid: 7611445
Qiu, Z., Oleinick, N. L. & Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 126, 450–464 (2018).
Forment, J. V. & O’Connor, M. J. Targeting the replication stress response in cancer. Pharmacol. Ther. 188, 155–167 (2018).
pubmed: 29580942
Eykelenboom, J. K. et al. ATR Activates the S-M checkpoint during unperturbed growth to ensure sufficient replication prior to mitotic onset. Cell Rep. 5, 1095–1107 (2013).
pubmed: 24268773
Bertoli, C., Herlihy, A. E., Pennycook, B. R., Kriston-Vizi, J. & De Bruin, R. A. M. Sustained E2F-dependent transcription is a key mechanism to prevent replication-stress-induced DNA damage. Cell Rep. 15, 1412–1422 (2016).
pubmed: 27160911
pmcid: 4893157
Penna, L. S., Henriques, J. A. P. & Bonatto, D. Anti-mitotic agents: are they emerging molecules for cancer treatment? Pharmacol. Ther. 173, 67–82 (2017).
pubmed: 28174095
Weaver, B. A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25, 2677–2681 (2014).
pubmed: 25213191
pmcid: 4161504
Zasadil, L. M. et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci. Transl. Med. 6, 1–10 (2014). Zasadil et al. show that the cytotoxic effects of paclitaxel at clinically relevant concentrations (as measured in human tumours) are not due to prolonged SAC activation and mitotic arrest but rather are due to chromosome segregation defects that result in unviable karyotypes and cell death.
Tischer, J. & Gergely, F. Anti-mitotic therapies in cancer. J. Cell Biol. 218, 10–11 (2019).
pubmed: 30545842
pmcid: 6314557
Yan, V. C. et al. Why great mitotic inhibitors make poor cancer drugs. Trends Cancer 6, 924–941 (2020).
pubmed: 32536592
pmcid: 7606322
Myers, S. M. & Collins, I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med. Chem. 8, 463–489 (2016).
pubmed: 26976726
Borisa, A. C. & Bhatt, H. G. A comprehensive review on Aurora kinase: small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem. 140, 1–19 (2017).
pubmed: 28918096
Gutteridge, R. E. A., Ndiaye, M. A., Liu, X. & Ahmad, N. Plk1 inhibitors in cancer therapy: from laboratory to clinics. Mol. Cancer Ther. 15, 1427–1435 (2016).
pubmed: 27330107
pmcid: 4936921
El-Arabey, A. A., Salama, S. A. & Abd-Allah, A. R. CENP-E as a target for cancer therapy: where are we now? Life Sci. 208, 192–200 (2018).
pubmed: 30031812
Rowald, K. et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep. 15, 2679–2691 (2016).
pubmed: 27292643
pmcid: 4920917
Maia, A. R. R. et al. Mps1 inhibitors synergise with low doses of taxanes in promoting tumour cell death by enhancement of errors in cell division. Br. J. Cancer 118, 1586–1595 (2018).
pubmed: 29736010
pmcid: 6008333
Cohen-Sharir, Y. et al. Aneuploidy renders cancer cells vulnerable to mitotic checkpoint inhibition. Nature 590, 486–491 (2021). Cohen-Sharir et al. show that aneuploid cells are more sensitive to SAC inhibition than diploid cells. Aneuploid cells were found to depend on an intact SAC for accurate chromosome segregation and long-term survival, implicating the SAC as a potential therapeutic target in aneuploid cancers.
pubmed: 33505028
pmcid: 8262644
Simon Serrano, S. et al. Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma. Sci. Rep. 10, 11997 (2020).
pubmed: 32686724
pmcid: 7371706
Wengner, A. M. et al. Novel Mps1 kinase inhibitors with potent antitumor activity. Mol. Cancer Ther. 15, 583–592 (2016).
pubmed: 26832791
Alimova, I. et al. MPS1 kinase as a potential therapeutic target in medulloblastoma. Oncol. Rep. 36, 2633–2640 (2016).
pubmed: 27633003
pmcid: 5055207
Siemeister, G. et al. Inhibition of BUB1 kinase by Bay 1816032 sensitizes tumor cells toward taxanes, ATR, and PARP inhibitors in vitro and in vivo. Clin. Cancer Res. 25, 1404–1414 (2019).
pubmed: 30429199
Silva, P. M. A. et al. Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxel. Cancer Lett. 394, 33–42 (2017).
pubmed: 28249757
Finn, R. S., Aleshin, A. & Slamon, D. J. Targeting the cyclin-dependent kinases (CDK) 4/6 in estrogen receptor-positive breast cancers. Breast Cancer Res. 18, 17 (2016).
pubmed: 26857361
pmcid: 4746893
Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).
pubmed: 15542782
Hortobagyi, G. N. et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N. Engl. J. Med. 375, 1738–1748 (2016).
pubmed: 27717303
Rader, J. et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin. Cancer Res. 19, 6173–6182 (2013).
pubmed: 24045179
Tripathy, D. et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): a randomised phase 3 trial. Lancet Oncol. 19, 904–915 (2018).
pubmed: 29804902
Sledge, G. W. Jr. Curing metastatic breast cancer. J. Oncol. Pract. 12, 6–10 (2016).
pubmed: 26759458
Dickler, M. N. et al. MONARCH 1, A phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR
pubmed: 28533223
pmcid: 5581697
Gelbert, L. M. et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. N. Drugs 32, 825–837 (2014).
Schulze, V. K. et al. Treating cancer by spindle assembly checkpoint abrogation: discovery of two clinical candidates, BAY 1161909 and BAY 1217389, targeting MPS1 kinase. J. Med. Chem. 63, 8025–8042 (2020).
pubmed: 32338514
DePamphilis, M. L. Genome duplication at the beginning of mammalian development. Curr. Top. Dev. Biol. 120, 55–102 (2016).
pubmed: 27475849
Arias, E. E. & Walter, J. C. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21, 497–518 (2007).
pubmed: 17344412
Davidson, I. F., Li, A. & Blow, J. J. Deregulated replication licensing causes DNA fragmentation consistent with head-to-tail fork collision. Mol. Cell 24, 433–443 (2006).
pubmed: 17081992
pmcid: 1819398
Neelsen, K. J. et al. Deregulated origin licensing leads to chromosomal breaks by rereplication of a gapped DNA template. Genes Dev. 27, 2537–2542 (2013).
pubmed: 24298053
pmcid: 3861667
Fragkos, M., Ganier, O., Coulombe, P. & Méchali, M. DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360–374 (2015).
pubmed: 25999062