Mechanisms, time course and predictability of premature ventricular contractions cardiomyopathy-an update on its development and resolution.
Cardiomyopathy
Catheter ablation
Predictors
Premature ventricular contraction arrhythmia
Time-to-event outcome
Journal
Heart failure reviews
ISSN: 1573-7322
Titre abrégé: Heart Fail Rev
Pays: United States
ID NLM: 9612481
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
accepted:
23
08
2021
pubmed:
13
9
2021
medline:
23
8
2022
entrez:
12
9
2021
Statut:
ppublish
Résumé
Frequent premature ventricular contractions (PVCs) associated left ventricular systolic dysfunction (LVSD) is a well-known clinical scenario and numerous predictors for cardiomyopathy (CMP) development have been already thoroughly described. It may present as a "pure" form of dissynchrony-induced cardiomyopathy or it may be an aggravating component of a multifactorial structural heart disease. However, the precise risk to develop PVC-induced CMP (which would allow for tailored-patient monitoring and/or early treatment) and the degree of CMP reversibility after PVC suppression/elimination (which may permit appropriate candidate selection for therapy) are unclear. Moreover, there is limited data regarding the time course of CMP development and resolution after arrhythmia suppression. Even less known are the other components of PVC-induced CMP, such as right ventricular (RV) and atrial myopathies. This review targets to synthetize the most recent information in this regard and bring a deeper understanding of this heart failure scenario. The mechanisms, time course (both in experimental models and clinical experiences) and predictors of reverse-remodelling after arrhythmia suppression are described. The novel experience hereby presented may aid everyday clinical practice, promoting a new paradigm involving more complex, multi-level and multi-modality evaluation and possible earlier intervention at least in some patient subsets.
Identifiants
pubmed: 34510326
doi: 10.1007/s10741-021-10167-w
pii: 10.1007/s10741-021-10167-w
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1639-1651Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Panizo JG, Barra S, Mellor G, Heck P, Agarwal S (2018) Premature ventricular complex-induced cardiomyopathy. Arrhythmia Electrophysiol Rev. https://doi.org/10.15420/aer.2018.23.2
doi: 10.15420/aer.2018.23.2
Yalin K, Gölcük E (2017) Frequent premature ventricular contractions and cardiomyopathy, chicken and egg situation. J Atr Fibrillation. https://doi.org/10.4022/jafib.1674
doi: 10.4022/jafib.1674
pubmed: 29250239
pmcid: 5673298
Olgun H et al (2011) The role of interpolation in PVC-induced cardiomyopathy. Hear Rhythm 8(7):1046–1049. https://doi.org/10.1016/j.hrthm.2011.02.034
doi: 10.1016/j.hrthm.2011.02.034
Tan AY et al (2020) Persistent proarrhythmic neural remodeling despite recovery from premature ventricular contraction-induced cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2019.10.046
doi: 10.1016/j.jacc.2019.10.046
pubmed: 33153582
pmcid: 7788566
Latchamsetty R, Bogun F (2016) Premature ventricular complex-induced cardiomyopathy. Rev Esp Cardiol 69(4):365–369
doi: 10.1016/j.recesp.2015.12.015
Russell K et al (2013) Assessment of wasted myocardial work: A novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am J Physiol - Hear Circ Physiol. https://doi.org/10.1152/ajpheart.00191.2013
doi: 10.1152/ajpheart.00191.2013
Nguyên UC, Verzaal NJ, van Nieuwenhoven FA, Vernooy K, Prinzen FW (2018) Pathobiology of cardiac dyssynchrony and resynchronization therapy. Europace. https://doi.org/10.1093/europace/euy035
doi: 10.1093/europace/euy035
pubmed: 30476054
Cha YM, Lee GK, Klarich KW, Grogan M (2012) Premature ventricular contraction-induced cardiomyopathy: A treatable condition. Circ Arrhythmia Electrophysiol 5(1):229–236. https://doi.org/10.1161/CIRCEP.111.963348
doi: 10.1161/CIRCEP.111.963348
Hamon D et al (2017) Premature ventricular contraction coupling interval variability destabilizes cardiac neuronal and electrophysiological control. Circ Arrhythmia Electrophysiol. https://doi.org/10.1161/CIRCEP.116.004937
doi: 10.1161/CIRCEP.116.004937
Sun Y et al (2003) The influence of premature ventricular contractions on left ventricular function in asymptomatic children without structural heart disease: An echocardiographic evaluation. Int J Cardiovasc Imaging 19(4):295–299. https://doi.org/10.1023/A:1025418531853
doi: 10.1023/A:1025418531853
pubmed: 14598897
Wang Y et al (2014) Cellular mechanism of premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 11(11):2064–2072. https://doi.org/10.1016/j.hrthm.2014.07.022
doi: 10.1016/j.hrthm.2014.07.022
pubmed: 25046857
pmcid: 4252777
Huizar JF et al (2011) Left ventricular systolic dysfunction induced by Ventricular Ectopy: a novel model for premature ventricular contraction-induced cardiomyopathy. Circ Arrhythmia Electrophysiol 4(4):543–549. https://doi.org/10.1161/CIRCEP.111.962381
doi: 10.1161/CIRCEP.111.962381
Akoum NW, Daccarett M, Wasmund SL, Hamdan MH (2011) An animal model for ectopy-induced cardiomyopathy. PACE - Pacing Clin Electrophysiol. https://doi.org/10.1111/j.1540-8159.2010.02947.x
doi: 10.1111/j.1540-8159.2010.02947.x
pubmed: 21070255
Walters TE et al (2020) Dyssynchrony and fibrosis persist after resolution of cardiomyopathy in a swine premature ventricular contraction model. JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2020.06.020
doi: 10.1016/j.jacep.2020.06.020
pubmed: 33334437
Ghannam M et al (2020) Risk stratification in patients with frequent premature ventricular complexes in the absence of known heart disease. Hear Rhythm 17(3):423–430. https://doi.org/10.1016/j.hrthm.2019.09.027
doi: 10.1016/j.hrthm.2019.09.027
Penela D et al (2019) Influence of myocardial scar on the response to frequent premature ventricular complex ablation. Heart. https://doi.org/10.1136/heartjnl-2018-313452
doi: 10.1136/heartjnl-2018-313452
pubmed: 30242139
Playford D, Subbiah R, Kuchar D, Aggarwal A, Vandenberg JI, Fatkin D (2012) R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. JAC 60(16):1566–1573. https://doi.org/10.1016/j.jacc.2012.05.050
doi: 10.1016/j.jacc.2012.05.050
Nair K et al (2012) Escape capture bigeminy: Phenotypic marker of cardiac sodium channel voltage sensor mutation R222Q. Hear Rhythm 9(10):1681-1688.e1. https://doi.org/10.1016/j.hrthm.2012.06.029
doi: 10.1016/j.hrthm.2012.06.029
Calloe K et al (2018) Multifocal atrial and ventricular premature contractions with an increased risk of dilated cardiomyopathy caused by a Na(v)1.5 gain-of-function mutation (G213D). Int J Cardiol 257:160–167. https://doi.org/10.1016/j.ijcard.2017.11.095
doi: 10.1016/j.ijcard.2017.11.095
pubmed: 29506689
Leventopoulos G, Perperis A, Karelas D, Almpanis G (2021) You cannot ablate the Lernaean Hydra SCN5A mutation in a patient with multifocal ectopic Purkinje-related premature contractions syndrome treated with Flecainide and an implant of a subcutaneous defibrillator-a case report. European Heart J Case Report. https://doi.org/10.1093/ehjcr/ytab158
doi: 10.1093/ehjcr/ytab158
Zakrzewska-Koperska J et al (2018) Rapid and effective response of the R222Q SCN5A to quinidine treatment in a patient with Purkinje-related ventricular arrhythmia and familial dilated cardiomyopathy: a case report. BMC Med Genet. https://doi.org/10.1186/s12881-018-0599-4
doi: 10.1186/s12881-018-0599-4
pubmed: 29871609
pmcid: 5989373
Doisne N et al (2020) A novel gain-of-function mutation in SCN5A responsible for multifocal ectopic Purkinje-related premature contractions. Hum Mutat 41(4):850–859. https://doi.org/10.1002/humu.23981
doi: 10.1002/humu.23981
pubmed: 31930659
Berruezo A, Efimova E, Acosta J, Jáuregui B (2018) Isolated, premature ventricular complex–induced right ventricular dysfunction mimicking arrhythmogenic right ventricular cardiomyopathy. Hear Case Reports 4(6):222–226. https://doi.org/10.1016/j.hrcr.2018.02.006
doi: 10.1016/j.hrcr.2018.02.006
Selvaraj RJ (2013) Premature ventricular complexes and left atrial appendage dysfunction—another head on a many-headed hydra? Indian Pacing Electrophysiol J. https://doi.org/10.1016/S0972-6292(16)30646-5
doi: 10.1016/S0972-6292(16)30646-5
pubmed: 24086097
pmcid: 3776025
Marzilli M, Sabbah HN, Stein PD (1980) Mitral regurgitation in ventricular premature contractions. The role of the papillary muscle. Chest 77(6):736–740
doi: 10.1378/chest.77.6.736
Tanaka Y et al (2016) Diffuse fibrosis leads to a decrease in unipolar voltage: Validation in a swine model of premature ventricular contraction-induced cardiomyopathy. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2015.09.025
doi: 10.1016/j.hrthm.2015.09.025
Tan AY et al (2016) Impact of ventricular ectopic burden in a premature ventricular contraction-induced cardiomyopathy animal model. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2015.11.016
doi: 10.1016/j.hrthm.2015.11.016
Walters TE et al (2018) Left ventricular dyssynchrony predicts the cardiomyopathy associated with premature ventricular contractions. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.09.059
doi: 10.1016/j.jacc.2018.09.059
pubmed: 30522650
pmcid: 5811927
Niwano S et al (2009) Prognostic significance of frequent premature ventricular contractions originating from the ventricular outflow tract in patients with normal left ventricular function. Heart 95(15):1230–1237. https://doi.org/10.1136/hrt.2008.159558
doi: 10.1136/hrt.2008.159558
pubmed: 19429571
Lee AKY et al (2019) Outcomes of untreated frequent premature ventricular complexes with normal left ventricular function. Heart 105(18):1408–1413. https://doi.org/10.1136/heartjnl-2019-314922
doi: 10.1136/heartjnl-2019-314922
pubmed: 31142596
Yokokawa M et al (2012) Relation of symptoms and symptom duration to premature ventricular complex-induced cardiomyopathy. Hear Rhythm 9(1):92–95. https://doi.org/10.1016/j.hrthm.2011.08.015
doi: 10.1016/j.hrthm.2011.08.015
Han FT (2021) Empiric ablation of asymptomatic PVCs when there is greater than 20% burden but normal left ventricular function-An argument in support of catheter ablation. Hear Rhythm O2. https://doi.org/10.1016/j.hroo.2021.02.004
doi: 10.1016/j.hroo.2021.02.004
Sadron Blaye-Felice M et al (2016) Premature ventricular contraction-induced cardiomyopathy: Related clinical and electrophysiologic parameters. Hear Rhythm 13(1):103–110. https://doi.org/10.1016/j.hrthm.2015.08.025
doi: 10.1016/j.hrthm.2015.08.025
Park Y et al (2014) Frequent premature ventricular complex is associated with left atrial enlargement in patients with normal left ventricular ejection fraction. PACE - Pacing Clin Electrophysiol. https://doi.org/10.1111/pace.12447
doi: 10.1111/pace.12447
pubmed: 25139513
Chen YS et al (2020) Atrial and ventricular response to treatment of premature ventricular complexes. Acta Cardiol Sin 36(5):475–482. https://doi.org/10.6515/ACS.202009_36(5).20200307A
doi: 10.6515/ACS.202009_36(5).20200307A
pubmed: 32952357
pmcid: 7490612
G. W. Moe, T. P. Stopps, R. J. Howard, and P. W. Armstrong, “Early recovery from heart failure: Insights into the pathogenesis of experimental chronic pacing-induced heart failure,” J. Lab. Clin. Med., 1988.
Moe GW, Grima EA, Howard RJ, Seth R, Armstrong PW (1994) Left ventricular remodelling and disparate changes in contractility and relaxation during the development of and recovery from experimental heart failure. Cardiovasc Res. https://doi.org/10.1093/cvr/28.1.66
doi: 10.1093/cvr/28.1.66
pubmed: 8174160
Howard RJ, Stopps TP, Moe GW, Gotlieb A, Armstrong PW (1988) Recovery from heart failure: structural and functional analysis in a canine model. Can J Physiol Pharmacol. https://doi.org/10.1139/y88-246
doi: 10.1139/y88-246
pubmed: 3228785
Spinale FG et al (1995) LV and myocyte structure and function after early recovery from tachycardia-induced cardiomyopathy. Am J Physiol 268(2 Pt 2):H836–H847
pubmed: 7864211
Yarlagadda RK et al (2005) Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 112(8):1092–1097. https://doi.org/10.1161/CIRCULATIONAHA.105.546432
doi: 10.1161/CIRCULATIONAHA.105.546432
pubmed: 16103234
Hasdemir C et al (2011) Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics, and the predictors. J Cardiovasc Electrophysiol 22(6):663–668. https://doi.org/10.1111/j.1540-8167.2010.01986.x
doi: 10.1111/j.1540-8167.2010.01986.x
pubmed: 21235667
Deyell MW et al (2012) Predictors of recovery of left ventricular dysfunction after ablation of frequent ventricular premature depolarizations. Hear Rhythm 9(9):1465–1472. https://doi.org/10.1016/j.hrthm.2012.05.019
doi: 10.1016/j.hrthm.2012.05.019
Hasdemir C, Kartal Y, Simsek E, Yavuzgil O, Aydin M, Can LH (2013) Time course of recovery of left ventricular systolic dysfunction in patients with premature ventricular contraction-induced cardiomyopathy. Pacing Clin Electrophysiol 36(5):612–617. https://doi.org/10.1111/pace.12087
doi: 10.1111/pace.12087
pubmed: 23379975
Yokokawa M et al (2013) Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Hear Rhythm 10(2):172–175. https://doi.org/10.1016/j.hrthm.2012.10.011
doi: 10.1016/j.hrthm.2012.10.011
Penela D et al (2013) Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol 62(13):1195–1202. https://doi.org/10.1016/j.jacc.2013.06.012
doi: 10.1016/j.jacc.2013.06.012
pubmed: 23850913
Wijnmaalen AP et al (2010) Beneficial effects of catheter ablation on left ventricular and right ventricular function in patients with frequent premature ventricular contractions and preserved ejection fraction. Heart. https://doi.org/10.1136/hrt.2009.188722
doi: 10.1136/hrt.2009.188722
pubmed: 20659945
Kanat S et al (2019) Left atrial function is improved in short-term follow-up after catheter ablation of outflow tract premature ventricular complexes. Med. https://doi.org/10.3390/medicina55060241
doi: 10.3390/medicina55060241
Sen J, Amerena J (2019) Premature ventricular contraction-induced dilated cardiomyopathy: a case report. Eur Hear J Case Reports. https://doi.org/10.1093/ehjcr/ytz016
doi: 10.1093/ehjcr/ytz016
Al-Khatib SM et al (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Circulation. https://doi.org/10.1161/CIR.0000000000000549
doi: 10.1161/CIR.0000000000000549
pubmed: 30566023
pmcid: 6312380
Priori SG, Blomström-Lundqvist C, Mazzanti A (2015) 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 8(9):746–837. https://doi.org/10.1093/europace/eul108
doi: 10.1093/europace/eul108
Hamon D et al (2019) Premature ventricular contraction diurnal profiles predict distinct clinical characteristics and beta-blocker responses. J Cardiovasc Electrophysiol 30(6):836–843. https://doi.org/10.1111/jce.13944
doi: 10.1111/jce.13944
pubmed: 30964570
Ling Z et al (2014) Radiofrequency ablation versus antiarrhythmic medication for treatment of ventricular premature beats from the right ventricular outflow tract prospective randomized study. Circ Arrhythmia Electrophysiol 7(2):237–243. https://doi.org/10.1161/CIRCEP.113.000805
doi: 10.1161/CIRCEP.113.000805
Zhong L et al (2014) Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions : A single-center retrospective study. Hear Rhythm 11(2):187–193. https://doi.org/10.1016/j.hrthm.2013.10.033
doi: 10.1016/j.hrthm.2013.10.033
H. J. F. et al (2021) Outcomes of premature ventricular contraction-cardiomyopathy in the veteran population. JACC Clin Electrophysiol 7(3):380–390. https://doi.org/10.1016/j.jacep.2020.08.028
doi: 10.1016/j.jacep.2020.08.028
Martens P et al (2019) Sacubitril/valsartan reduces ventricular arrhythmias in parallel with left ventricular reverse remodeling in heart failure with reduced ejection fraction. Clin Res Cardiol 108(10):1074–1082. https://doi.org/10.1007/s00392-019-01440-y
doi: 10.1007/s00392-019-01440-y
pubmed: 30788621
Komoriya M et al (2008) Long-term prognosis for non-ischemic heart disease patients with premature ventricular contraction and non-sustained ventricular tachycardia. J Arrhythmia 24(1):18–25. https://doi.org/10.1016/S1880-4276(08)80003-8
doi: 10.1016/S1880-4276(08)80003-8
L. Capulzini et al., “Acute and one year outcome of premature ventricular contraction ablation guided by contact force and automated pacemapping software,” no. September 2018, pp. 542–549, 2019, doi: https://doi.org/10.1002/joa3.12194 .
Latchamsetty R et al (2015) Multicenter outcomes for catheter ablation of idiopathic premature ventricular complexes. JACC Clin Electrophysiol 1(3):116–123. https://doi.org/10.1016/j.jacep.2015.04.005
doi: 10.1016/j.jacep.2015.04.005
pubmed: 29759353
Baser K et al (2015) Recurrence of PVCs in patients with PVC-induced cardiomyopathy. Hear Rhythm 12(7):1519–1523. https://doi.org/10.1016/j.hrthm.2015.03.027
doi: 10.1016/j.hrthm.2015.03.027
Latchamsetty R, Bogun F (2017) Premature ventricular complex ablation in structural heart disease. Cardiac Electrophysiology Clinics. https://doi.org/10.1016/j.ccep.2016.10.010
doi: 10.1016/j.ccep.2016.10.010
pubmed: 28167081
Berruezo A et al (2019) Mortality and morbidity reduction after frequent premature ventricular complexes ablation in patients with left ventricular systolic dysfunction. Europace. https://doi.org/10.1093/europace/euz027
doi: 10.1093/europace/euz027
pubmed: 31075787
pmcid: 7967791
Sarrazin JF et al (2009) Impact of radiofrequency ablation of frequent post-infarction premature ventricular complexes on left ventricular ejection fraction. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2009.08.004
doi: 10.1016/j.hrthm.2009.08.004
Penela D et al (2015) Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm 12(12):2434–2442. https://doi.org/10.1016/j.hrthm.2015.09.011
doi: 10.1016/j.hrthm.2015.09.011
pubmed: 26385530
Zang M, Zhang T, Mao J, Zhou S, He B (2014) Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart. https://doi.org/10.1136/heartjnl-2013-305175
doi: 10.1136/heartjnl-2013-305175
pubmed: 24670420
Baman TS et al (2010) Relationship between burden of premature ventricular complexes and left ventricular function. Hear Rhythm 7(7):865–869. https://doi.org/10.1016/j.hrthm.2010.03.036
doi: 10.1016/j.hrthm.2010.03.036
Lakkireddy D et al (2012) Radiofrequency ablation of premature ventricular ectopy improves the efficacy of cardiac resynchronization therapy in nonresponders. J Am Coll Cardiol 60(16):1531–1539. https://doi.org/10.1016/j.jacc.2012.06.035
doi: 10.1016/j.jacc.2012.06.035
pubmed: 22999718
Marie SBF et al (2016) Reversal of left ventricular dysfunction after ablation of premature ventricular contractions related parameters, paradoxes and exceptions to the rule. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2016.07.005
doi: 10.1016/j.ijcard.2016.07.005
Abdelhamid MA, Samir R (2018) Reversal of premature ventricular complexes induced cardiomyopathy Influence of concomitant structural heart disease. Indian Heart J. https://doi.org/10.1016/j.ihj.2017.08.025
doi: 10.1016/j.ihj.2017.08.025
pubmed: 29961459
Ruwald MH et al (2014) Association between frequency of atrial and ventricular ectopic beats and biventricular pacing percentage and outcomes in patients with cardiac resynchronization therapy. J Am Coll Cardiol 64(10):971–981. https://doi.org/10.1016/j.jacc.2014.06.1177
doi: 10.1016/j.jacc.2014.06.1177
pubmed: 25190230
Penela D et al (2013) Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: A prospective multicenter study. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2013.06.012
doi: 10.1016/j.jacc.2013.06.012
pubmed: 23850913
Penela D et al (2015) Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2015.09.011
doi: 10.1016/j.hrthm.2015.09.011
Penela D et al (2021) Premature ventricular complex site of origin and ablation outcomes in patients with prior myocardial infarction. Hear Rhythm 18(1):27–33. https://doi.org/10.1016/j.hrthm.2020.07.037
doi: 10.1016/j.hrthm.2020.07.037
Penela D et al (2017) Clinical recognition of pure premature ventricular complex-induced cardiomyopathy at presentation. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2017.07.025
doi: 10.1016/j.hrthm.2017.07.025
Campos B et al (2012) New unipolar electrogram criteria to identify irreversibility of nonischemic left ventricular cardiomyopathy. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2012.08.977
doi: 10.1016/j.jacc.2012.08.977
pubmed: 23103045
Penela D et al (2020) Influence of baseline QRS on the left ventricular ejection fraction recovery after frequent premature ventricular complex ablation. Europace 22(2):274–280. https://doi.org/10.1093/europace/euz330
doi: 10.1093/europace/euz330
pubmed: 31942618
Del Carpio Munoz F et al (2011) Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J Cardiovasc Electrophysiol 22(7):791–798. https://doi.org/10.1111/j.1540-8167.2011.02021.x
doi: 10.1111/j.1540-8167.2011.02021.x
pubmed: 21332870
Baman TS et al (2010) Relationship between burden of premature ventricular complexes and left ventricular function. Hear Rhythm. https://doi.org/10.1016/j.hrthm.2010.03.036
doi: 10.1016/j.hrthm.2010.03.036
Carballeira Pol L et al (2014) Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Hear. Rhythm 11(2):299–306. https://doi.org/10.1016/j.hrthm.2013.10.055
doi: 10.1016/j.hrthm.2013.10.055
Zhong L et al (2014) Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: A single-center retrospective study. Hear Rhythm 11(2):187–193. https://doi.org/10.1016/j.hrthm.2013.10.033
doi: 10.1016/j.hrthm.2013.10.033
Badertscher P et al (2021) Impact of age on catheter ablation of premature ventricular contractions. J Cardiovasc Electrophysiol 32(4):1077–1084. https://doi.org/10.1111/jce.14976
doi: 10.1111/jce.14976
pubmed: 33650717
Wang J et al (2018) The safety of catheter ablation for premature ventricular contractions in patients without structural heart disease. BMC Cardiovasc Disord 18(1):177. https://doi.org/10.1186/s12872-018-0913-2
doi: 10.1186/s12872-018-0913-2
pubmed: 30170545
pmcid: 6119274
Enriquez A et al (2017) Inferior lead discordance in ventricular arrhythmias: A specific marker for certain arrhythmia locations. J Cardiovasc Electrophysiol 28(10):1179–1186. https://doi.org/10.1111/jce.13287
doi: 10.1111/jce.13287
pubmed: 28677887
Lakkireddy D et al (2021) SafeTy and efficacy of direct oral anticoagulant versus aspirin for reduction of risk of CErebrovascular events in patients undergoing ventricular tachycardia ablation (STROKE-VT). JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2021.07.010
doi: 10.1016/j.jacep.2021.07.010
pubmed: 35057977