The use of variable delay multipulse chemical exchange saturation transfer for separately assessing different CEST pools in the human brain at 7T.
7T
chemical exchange saturation transfer (CEST)
ultrahigh field
variable delay multipulse (VDMP)-CEST
Journal
Magnetic resonance in medicine
ISSN: 1522-2594
Titre abrégé: Magn Reson Med
Pays: United States
ID NLM: 8505245
Informations de publication
Date de publication:
02 2022
02 2022
Historique:
revised:
19
08
2021
received:
23
02
2021
accepted:
23
08
2021
pubmed:
15
9
2021
medline:
1
2
2022
entrez:
14
9
2021
Statut:
ppublish
Résumé
Current challenges of in vivo CEST imaging include overlapping signals from different pools. The overlap arises from closely resonating pools and/or the broad magnetization transfer contrast (MTC) from macromolecules. This study aimed to evaluate the feasibility of variable delay multipulse (VDMP) CEST to separately assess solute pools with different chemical exchange rates in the human brain in vivo, while mitigating the MTC. VDMP saturation buildup curves were simulated for amines, amides, and relayed nuclear Overhauser effect. VDMP data were acquired from glutamate and bovine serum albumin phantoms, and from six healthy volunteers at 7T. For the in vivo data, MTC removal was performed via a three-pool Lorentzian fitting. Different B The results show the importance of removing MTC when applying VDMP in vivo and the influence of B VDMP is a powerful CEST-editing tool, exploiting chemical exchange-rate differences. After MTC removal, it allows separate assessment of slow- and fast-exchanging solute pools in in vivo human brain.
Identifiants
pubmed: 34520077
doi: 10.1002/mrm.29005
pmc: PMC9290048
doi:
Substances chimiques
Amides
0
Amines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
872-883Informations de copyright
© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Références
Magn Reson Med. 2014 May;71(5):1798-812
pubmed: 23813483
NMR Biomed. 2019 Dec;32(12):e4176
pubmed: 31608510
Neuroimage. 2013 Jan 1;64:640-9
pubmed: 22940589
Neuroimage. 2015 May 15;112:180-188
pubmed: 25727379
Magn Reson Med. 2020 Apr;83(4):1405-1417
pubmed: 31691367
Magn Reson Med. 2016 Jan;75(1):88-96
pubmed: 26445350
Magn Reson Med. 2018 Oct;80(4):1568-1576
pubmed: 29405374
Quant Imaging Med Surg. 2019 Oct;9(10):1747-1766
pubmed: 31728316
Neuroimage. 2012 Aug 15;62(2):782-90
pubmed: 21979382
Magn Reson Med. 2022 Feb;87(2):872-883
pubmed: 34520077
NMR Biomed. 2012 Nov;25(11):1305-9
pubmed: 22431193
NMR Biomed. 2015 May;28(5):529-37
pubmed: 25788155
Magn Reson Med. 2011 Apr;65(4):927-48
pubmed: 21337419
NMR Biomed. 2013 Oct;26(10):1278-84
pubmed: 23553932
NMR Biomed. 2017 May;30(5):
pubmed: 28111824
Sci Rep. 2019 Jan 31;9(1):1089
pubmed: 30705355
Methods Mol Biol. 2011;711:227-37
pubmed: 21279604
Contrast Media Mol Imaging. 2016 Jan-Feb;11(1):4-14
pubmed: 26153196
Neuroimage. 2013 Aug 15;77:114-24
pubmed: 23567889
Magn Reson Med. 2017 Feb;77(2):730-739
pubmed: 26900759
Nat Med. 2003 Aug;9(8):1085-90
pubmed: 12872167
IEEE Trans Med Imaging. 2001 Jan;20(1):45-57
pubmed: 11293691
Neuroimage. 2012 Jul 16;61(4):1402-18
pubmed: 22430496
Nat Med. 2012 Jan 22;18(2):302-6
pubmed: 22270722
Neuroimage. 2018 Mar;168:222-241
pubmed: 28435103
Hum Brain Mapp. 2002 Nov;17(3):143-55
pubmed: 12391568
Magn Reson Med. 2012 Nov;68(5):1517-26
pubmed: 22252850
Eur Radiol. 2020 Jun;30(6):3046-3058
pubmed: 32086580
Neuroimage. 2019 Apr 1;189:202-213
pubmed: 30654175
Magn Reson Med. 2018 Dec;80(6):2609-2617
pubmed: 29802641
Magn Reson Med. 2017 Apr;77(4):1525-1532
pubmed: 27060863