Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects.

Beta-tricalcium phosphate Bone regeneration Calcium deficient hydroxyapatite Engraftment Human bone marrow mesenchymal stromal cells

Journal

Acta biomaterialia
ISSN: 1878-7568
Titre abrégé: Acta Biomater
Pays: England
ID NLM: 101233144

Informations de publication

Date de publication:
11 2021
Historique:
received: 26 10 2020
revised: 01 09 2021
accepted: 06 09 2021
pubmed: 15 9 2021
medline: 17 11 2021
entrez: 14 9 2021
Statut: ppublish

Résumé

In contrast to sintered calcium phosphates (CaPs) commonly employed as scaffolds to deliver mesenchymal stromal cells (MSCs) targeting bone repair, low temperature setting conditions of calcium deficient hydroxyapatite (CDHA) yield biomimetic topology with high specific surface area. In this study, the healing capacity of CDHA administering MSCs to bone defects is evaluated for the first time and compared with sintered beta-tricalcium phosphate (β-TCP) constructs sharing the same interconnected macroporosity. Xeno-free expanded human bone marrow MSCs attached to the surface of the hydrophobic β-TCP constructs, while infiltrating the pores of the hydrophilic CDHA. Implantation of MSCs on CaPs for 8 weeks in calvaria defects of nude mice exhibited complete healing, with bone formation aligned along the periphery of β-TCP, and conversely distributed within the pores of CDHA. Human monocyte-osteoclast differentiation was inhibited in vitro by direct culture on CDHA compared to β-TCP biomaterials and indirectly by administration of MSC-conditioned media generated on CDHA, while MSCs increased osteoclastogenesis in both CaPs in vivo. MSC engraftment was significantly higher in CDHA constructs, and also correlated positively with bone in-growth in scaffolds. These findings demonstrate that biomimetic CDHA are favorable carriers for MSC therapies and should be explored further towards clinical bone regeneration strategies. STATEMENT OF SIGNIFICANCE: Delivery of mesenchymal stromal cells (MSCs) on calcium phosphate (CaP) biomaterials enhances reconstruction of bone defects. Traditional CaPs are produced at high temperature, but calcium deficient hydroxyapatite (CDHA) prepared at room temperature yields a surface structure more similar to native bone mineral. The objective of this study was to compare the capacity of biomimetic CDHA scaffolds with sintered β-TCP scaffolds for bone repair mediated by MSCs for the first time. In vitro, greater cell infiltration occurred in CDHA scaffolds and following 8 weeks in vivo, MSC engraftment was higher in CDHA compared to β-TCP, as was bone in-growth. These findings demonstrate the impact of material features such as surface structure, and highlight that CDHA should be explored towards clinical bone regeneration strategies.

Identifiants

pubmed: 34520883
pii: S1742-7061(21)00595-X
doi: 10.1016/j.actbio.2021.09.007
pii:
doi:

Substances chimiques

Calcium Phosphates 0
calcium phosphate 97Z1WI3NDX

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

689-704

Informations de copyright

Copyright © 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Meadhbh Á Brennan (MÁ)

INSERM, UMR 1238, PHY-OS, Faculty of Medicine, University of Nantes, 1 Rue Gaston Veil, Nantes 44035, France; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Biomedical Engineering, School of Engineering; and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland (NUIG), Galway, Ireland.

David S Monahan (DS)

Biomedical Engineering, School of Engineering; and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland (NUIG), Galway, Ireland.

Bénédicte Brulin (B)

INSERM, UMR 1238, PHY-OS, Faculty of Medicine, University of Nantes, 1 Rue Gaston Veil, Nantes 44035, France; INSERM, UMR 1214, ToNIC, CHU Purpan, Université Paul Sabatier, Toulouse 31024, France.

Sara Gallinetti (S)

Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, Barcelona 08019, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.

Paul Humbert (P)

INSERM, UMR 1238, PHY-OS, Faculty of Medicine, University of Nantes, 1 Rue Gaston Veil, Nantes 44035, France.

Christina Tringides (C)

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Harvard Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.

Cristina Canal (C)

Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, Barcelona 08019, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.

Maria Pau Ginebra (MP)

Biomaterials, Biomechanics and Tissue Engineering Group, Dpt. Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 10-14, Barcelona 08019, Spain; Research Centre in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain; Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Baldiri i Reixach 10-12, Barcelona 08028, Spain.

Pierre Layrolle (P)

INSERM, UMR 1238, PHY-OS, Faculty of Medicine, University of Nantes, 1 Rue Gaston Veil, Nantes 44035, France; INSERM, UMR 1214, ToNIC, CHU Purpan, Université Paul Sabatier, Toulouse 31024, France. Electronic address: pierre.layrolle@inserm.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH