Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 09 2021
Historique:
received: 13 10 2018
accepted: 22 07 2021
entrez: 15 9 2021
pubmed: 16 9 2021
medline: 7 10 2021
Statut: epublish

Résumé

Mass extinctions have repeatedly shaped global biodiversity. The Cretaceous-Paleogene (K-Pg) mass extinction caused the demise of numerous vertebrate groups, and its aftermath saw the rapid diversification of surviving mammals, birds, frogs, and teleost fishes. However, the effects of the K-Pg extinction on the evolution of snakes-a major clade of predators comprising over 3,700 living species-remains poorly understood. Here, we combine an extensive molecular dataset with phylogenetically and stratigraphically constrained fossil calibrations to infer an evolutionary timescale for Serpentes. We reveal a potential diversification among crown snakes associated with the K-Pg mass extinction, led by the successful colonisation of Asia by the major extant clade Afrophidia. Vertebral morphometrics suggest increasing morphological specialisation among marine snakes through the Paleogene. The dispersal patterns of snakes following the K-Pg underscore the importance of this mass extinction event in shaping Earth's extant vertebrate faunas.

Identifiants

pubmed: 34521829
doi: 10.1038/s41467-021-25136-y
pii: 10.1038/s41467-021-25136-y
pmc: PMC8440539
doi:

Substances chimiques

DNA, Ancient 0

Banques de données

Dryad
['10.5061/dryad.tv055']

Types de publication

Historical Article Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5335

Subventions

Organisme : Medical Research Council
ID : MR/S032177/1
Pays : United Kingdom

Informations de copyright

© 2021. The Author(s).

Références

Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
pubmed: 21368823 doi: 10.1038/nature09678
Longrich, N. R., Scriberas, J. & Wills, M. A. Severe extinction and rapid recovery of mammals across the Cretaceous–Palaeogene boundary, and the effects of rarity on patterns of extinction and recovery. J. Evol. Biol. 29, 1495–1512 (2016).
pubmed: 27167897 doi: 10.1111/jeb.12882
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).
pubmed: 17783054 doi: 10.1126/science.208.4448.1095
Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).
pubmed: 20203042 doi: 10.1126/science.1177265
Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the Cenozoic. GSA Bull. 116, 760–768 (2004).
doi: 10.1130/B25402.1
Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628–642 (2015).
pubmed: 25065505 doi: 10.1111/brv.12128
Longrich, N. R., Martill, D. M. & Andres, B. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biol. 16, e2001663 (2018).
pubmed: 29534059 pmcid: 5849296 doi: 10.1371/journal.pbio.2001663
Polcyn, M. J., Jacobs, L. L., Araújo, R., Schulp, A. S. & Mateus, O. Physical drivers of mosasaur evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 17–27 (2014).
doi: 10.1016/j.palaeo.2013.05.018
Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous – Paleogene (K–Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).
pubmed: 21914849 pmcid: 3174646 doi: 10.1073/pnas.1110395108
Longrich, N. R., Bhullar, B.-A. S. & Gauthier, J. A. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 109, 21396–21401 (2012).
pubmed: 23236177 pmcid: 3535637 doi: 10.1073/pnas.1211526110
Labandeira, C. C., Johnson, K. R. & Wilf, P. Impact of the terminal Cretaceous event on plant – insect associations. Proc. Natl Acad. Sci. USA 99, 2061–2066 (2001).
doi: 10.1073/pnas.042492999
Wilf, P. & Johnson, K. R. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30, 347–368 (2004).
doi: 10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2
Wolfe, J. A. & Upchurch, G. R. Jr Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324, 148–152 (1986).
doi: 10.1038/324148a0
Nichols, D. J. & Johnson, K. R. Plants and the K-T Boundary (Cambridge Univ. Press, 2008).
Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).
pubmed: 12078635 doi: 10.1080/106351599260472
dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B Biol. Sci. 279, 3491–3500 (2012).
doi: 10.1098/rspb.2012.0683
Ksepka, D. T., Stidham, T. A. & Williamson, T. E. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the K–Pg mass extinction. Proc. Natl Acad. Sci. USA 114, 8047–8052 (2017).
pubmed: 28696285 pmcid: 5544281 doi: 10.1073/pnas.1700188114
Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).
pubmed: 26444237 doi: 10.1038/nature15697
Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput Effect across the K-Pg extinction. Syst. Biol. 67, 1–13 (2018).
pubmed: 28973546 doi: 10.1093/sysbio/syx064
Feng, Y. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous – Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864–E5870 (2017).
pubmed: 28673970 pmcid: 5530686 doi: 10.1073/pnas.1704632114
Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. Biol. Sci. 277, 1675–1683 (2010).
pubmed: 20133356 pmcid: 2871855
Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).
pubmed: 29531346 doi: 10.1038/s41559-018-0494-6
Evans, S. E. At the feet of the dinosaurs: the early history and radiation of lizards. Biol. Rev. Camb. Philos. Soc. 78, 513–551 (2003).
pubmed: 14700390 doi: 10.1017/S1464793103006134
Rage, J.-C. & Escuillié, F. The Cenomanian: Stage of Hindlimbed Snakes. Carnets de Géologie 1–11 (2003).
Mounce, R. C. P., Sansom, R. & Wills, M. A. Sampling diverse characters improves phylogenies: Craniodental and postcranial characters of vertebrates often imply different trees. Evolution 70, 666–668 (2016).
pubmed: 26899622 doi: 10.1111/evo.12884
Sansom, R. S., Wills, M. A. & Williams, T. Dental data perform relatively poorly in reconstructing mammal phylogenies: morphological partitions evaluated with molecular benchmarks. Syst. Biol. 66, 813–822 (2017).
pubmed: 28003534 pmcid: 5790133
Li, Y., Ruta, M. & Wills, M. A. Craniodental and postcranial characters of non-avian Dinosauria often imply different trees. Syst. Biol. 69, 638–659 (2020).
Sansom, R. S. & Wills, M. A. Differences between hard and soft phylogenetic data. Proc. R. Soc. B 284, 20172150 (2017).
pubmed: 29237859 pmcid: 5745416 doi: 10.1098/rspb.2017.2150
Hipsley, C. A., Himmelmann, L., Metzler, D. & Müller, J. Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evol. Biol. 9, 151 (2009).
pubmed: 19570207 pmcid: 2719621 doi: 10.1186/1471-2148-9-151
Longrich, N. R., Vinther, J., Pyron, R. A., Pisani, D. & Gauthier, J. A. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proc. R. Soc. Lond. B Biol. Sci. 282, 20143034 (2015).
Vidal, N. & Hedges, S. B. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C. R. Biol. 332, 129–139 (2009).
pubmed: 19281946 doi: 10.1016/j.crvi.2008.07.010
Zheng, Y. & Wiens, J. J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537–547 (2016).
pubmed: 26475614 doi: 10.1016/j.ympev.2015.10.009
Harrington, S. M. & Reeder, T. W. Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biol. J. Linn. Soc. 121, 379–394 (2017).
doi: 10.1093/biolinnean/blw039
Hsiang, A. Y. et al. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol. Biol. 15, 87 (2015).
pubmed: 25989795 pmcid: 4438441 doi: 10.1186/s12862-015-0358-5
Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013).
pubmed: 24063680 pmcid: 4016551 doi: 10.1186/1471-2148-13-208
Pyron, R. A. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Biol. 66, 38–56 (2017).
pubmed: 28173602
Head, J. J., Mahlow, K. & Müller, J. Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontol. Electron. 19, 1–21 (2016).
doi: 10.26879/625
Head, J. J. Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontol. Electron. 18, 1–17 (2015).
Butler, R. J., Brusatte, S. L., Andres, B. & Benson, R. B. J. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity. Evolution 66, 147–162 (2011).
pubmed: 22220871 doi: 10.1111/j.1558-5646.2011.01415.x
Head, J. J. et al. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457, 715–717 (2009).
pubmed: 19194448 doi: 10.1038/nature07671
Kristensen, H. V., Cuny, G., Rasmussen, A. R. & Madsen, H. Earliest record of the fossil snake Palaeophis from the Paleocene/Eocene boundary in Denmark. Bull. Soc. Géol. Fr. 183, 621–625 (2012).
doi: 10.2113/gssgfbull.183.6.621
Augé, M. & Rage, J.-C. Herpetofaunas from the Upper Paleocene and Lower Eocene of Morocco. Ann. Paléontologie 92, 235–253 (2006).
doi: 10.1016/j.annpal.2005.09.001
Field, D. J. et al. Timing the extant avian radiation: The rise of modern birds, and the importance of modeling molecular rate variation. Bull. Am. Mus. Nat. Hist. 440, 1590191 (2020).
Korn, D., Hopkins, M. J. & Walton, S. A. Extinction space - a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67, 2795–2810 (2013).
pubmed: 24094334
Puttick, M. N., Guillerme, T. & Wills, M. A. The complex effects of mass extinctions on morphological disparity. Evolution 74, 2207–2220 (2020).
pubmed: 32776526 doi: 10.1111/evo.14078
Rio, J. P. & Mannion, P. D. The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae. J. Vertebr. Paleontol. 37, e1347179 (2017).
doi: 10.1080/02724634.2017.1347179
Matzke, N. Founder-event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal-Extinction-Cladogenesis (DEC) analyses. Front. Biogeogr. 4, 210 (2012).
Matzke, N. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).
doi: 10.21425/F55419694
Klein, C. G., Longrich, N. R., Ibrahim, N., Zouhri, S. & Martill, D. M. A new basal snake from the mid-Cretaceous of Morocco. Cretac. Res. 72, 134–141 (2017).
doi: 10.1016/j.cretres.2016.12.001
Rage, J.-C. & Dutheil, D. B. Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco. A preliminary study, with description of a new genus of pipid frog. Palaeontogr. Palaozool. Stratigraph. 285, 1–22 (2008).
Vullo, R. A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes. C. R. Palevol. 1132, 6–11 (2019).
Rage, J.-C. in Handbuch der Paläoherpetologie (ed. Wellnhofer, P.) 1–80 (Gustav Fischer, 1984).
Rage, J.-C. Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part I. Madtsoiidae, Aniliidae. Palaeovertebrata 27, 109–1144 (1998).
Smith, K. T. New constraints on the evolution of the snake clades Ungaliophiinae, Loxocemidae and Colubridae (Serpentes), with comments on the fossil history of erycine boids in North America. Zool. Anz. 252, 157–182 (2013).
doi: 10.1016/j.jcz.2012.05.006
Goldin, T. J. & Melosh, H. J. Self-shielding of thermal radiation by Chicxulub impact ejecta: firestorm or fizzle? Geology 37, 1135–1138 (2009).
doi: 10.1130/G30433A.1
Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K-Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).
doi: 10.1002/jgrg.20086
Sheehan, P. M. & Fastovsky, D. E. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20, 556–560 (1992).
doi: 10.1130/0091-7613(1992)020<0556:MEOLDV>2.3.CO;2
Greene, H. W. Snakes: The Evolution of Mystery in Nature (Univ. California Press, 1997).
Secor, S. M. & Diamond, J. M. Evolution of regulatory responses to feeding in snakes. Physiol. Biochem. Zool. 73, 123–141 (2000).
pubmed: 10801391 doi: 10.1086/316734
Wilson, G. P. Mammals across the K/Pg boundary in northeastern Montana, U.S.A.: dental morphology and body-size patterns reveal extinction selectivity and immigrant-fueled ecospace filling. Paleobiology 39, 429–469 (2013).
doi: 10.1666/12041
Field, D. J. et al. Early evolution of modern birds structured by global forest collapse at the End-Cretaceous mass extinction. Curr. Biol. 28, 1825–1831.e2 (2018).
pubmed: 29804807 doi: 10.1016/j.cub.2018.04.062
Rage, J.-C. Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part II. Boidae. Palaeovertebrata (Montp.) 30, 111–150 (2001).
Duchêne, S., Lanfear, R. & Ho, S. Y. W. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol. Phylogenet. Evol. 78, 277–289 (2014).
pubmed: 24910154 doi: 10.1016/j.ympev.2014.05.032
Warnock, R. C. M., Parham, J. F., Joyce, W. G., Lyson, T. R. & Donoghue, P. C. J. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc. R. Soc. B 282, 20141013 (2015).
pubmed: 25429012 pmcid: 4262156 doi: 10.1098/rspb.2014.1013
Parham, J. F. et al. Best practices for justifying fossil calibrations. Syst. Biol. 61, 346–359 (2012).
pubmed: 22105867 doi: 10.1093/sysbio/syr107
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O. & Behlke, A. D. B. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bull. Peabody Mus. Nat. Hist. 53, 3–308 (2012).
doi: 10.3374/014.053.0101
Conrad, J. L. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull. Am. Mus. Nat. Hist. 310, 1–182 (2008).
doi: 10.1206/310.1
Tao, Q., Tamura, K., Battistuzzi, F. U. & Kumar, S. A machine learning method for detecting autocorrelation of evolutionary rates in large phylogenies. Mol. Biol. Evol. 36, 811–824 (2019).
pubmed: 30689923 pmcid: 6804408 doi: 10.1093/molbev/msz014
Budd, G. E. & Mann, R. P. The dynamics of stem and crown groups. Sci. Adv. 6, eaaz1626 (2020).
pubmed: 32128421 pmcid: 7030935 doi: 10.1126/sciadv.aaz1626
Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).
pubmed: 23884651 pmcid: 3752257 doi: 10.1073/pnas.1302642110
Lawing, A. M., Head, J. J. & Polly, P. D. In Paleontology in Ecology and Conservation (ed., Louys, J.) 117–146 (Springer Earth System Sciences, 2012). https://doi.org/10.1007/978-3-642-25038-5
Rage, J.-C. & Augé, M. Squamates from the Cainozoic of the Western part of Europe. A review. Rev. Paléobiol. Spec. 7, 199–216 (1993).
Liu, Z. et al. Eocene-Oligocene climate transition. Science 323, 1187–1190 (2008).
doi: 10.1126/science.1166368
Simões, B. F. et al. Visual system evolution and the nature of the ancestral snake. J. Evol. Biol. 28, 1309–1320 (2015).
pubmed: 26012745 doi: 10.1111/jeb.12663
Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. 116, 7916–7925 (2019).
pubmed: 30936315 pmcid: 6475423 doi: 10.1073/pnas.1813206116
Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. USA 39, 517–544 (2011).
doi: 10.1146/annurev-earth-040809-152402
Zheng, Y. & Wiens, J. J. Data from: Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. DataDryad. https://doi.org/10.5061/dryad.tv055 (2016).
Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).
dos Reis, M., Donoghue, P. C. J. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. 17, 71–80 (2015).
doi: 10.1038/nrg.2015.8
Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. http://www.mesquiteproject.org (2016).
Reeder, T. W. et al. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE 10, 1–22 (2015).
doi: 10.1371/journal.pone.0118199
Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
pubmed: 17483113 doi: 10.1093/molbev/msm088
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).
dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).
pubmed: 26603774 pmcid: 4651906 doi: 10.1016/j.cub.2015.09.066
Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).
pubmed: 29463716 pmcid: 5877938 doi: 10.1073/pnas.1719588115
Benton, M. J. et al. Constraints on the timescale of animal evolutionary history. Palaeontol. Electron. 18, 1–106 (2015).
Uetz, P., Freed, P. & Hosek, J. The Reptile Database http://www.reptile-database.org/ (2020).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Mayer, M. missRanger: fast imputation of missing values. R package version 2.1.0 https://github.com/mayer79/missRanger (2019).
Stekhoven, D. J. & Bühlmann, P. MissForest — non-parametric missing value imputation for mixed-type data. Bioinformatics 25, 303–317 (2011).
Wills, M. A. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biol. J. Linn. Soc. 65, 455–500 (1998).
doi: 10.1111/j.1095-8312.1998.tb01149.x
R CoreTeam. R: A Language and Environment for Statistical Computing (R CoreTeam, 2017).

Auteurs

Catherine G Klein (CG)

The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK. catherine.g.klein@gmail.com.
GeoZentrum Nordbayern, Friedrich-Alexander University Erlangen-Nürnberg, Loewenichstr. 28, Erlangen, Germany. catherine.g.klein@gmail.com.

Davide Pisani (D)

School of Earth Sciences, School of Biological Sciences, University of Bristol, Bristol, UK.

Daniel J Field (DJ)

The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
Department of Earth Sciences, University of Cambridge, Cambridge, Cambridgeshire, UK.

Rebecca Lakin (R)

The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.

Matthew A Wills (MA)

The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.

Nicholas R Longrich (NR)

The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK. n.r.longrich@bath.ac.uk.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH