MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots.
Animals
Anion Transport Proteins
/ genetics
Arabidopsis
/ genetics
Biological Evolution
Biological Transport
Chlorides
/ metabolism
Conserved Sequence
Gene Expression Regulation, Plant
Homeostasis
Medicago truncatula
/ genetics
Nitrates
/ metabolism
Oocytes
Phylogeny
Plant Proteins
/ genetics
Plant Roots
/ genetics
Protein Binding
Protein Isoforms
/ genetics
Seedlings
/ genetics
Signal Transduction
Transcription Factors
/ genetics
Xenopus laevis
MtNLP1
NPF
NRT1.1
chloride uptake
nitrate preference
Journal
The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664
Informations de publication
Date de publication:
02 11 2021
02 11 2021
Historique:
revised:
23
07
2021
received:
22
09
2020
accepted:
28
07
2021
pubmed:
16
9
2021
medline:
15
12
2021
entrez:
15
9
2021
Statut:
ppublish
Résumé
The preference for nitrate over chloride through regulation of transporters is a fundamental feature of plant ion homeostasis. We show that Medicago truncatula MtNPF6.5, an ortholog of Arabidopsis thaliana AtNPF6.3/NRT1.1, can mediate nitrate and chloride uptake in Xenopus oocytes but is chloride selective and that its close homologue, MtNPF6.7, can transport nitrate and chloride but is nitrate selective. The MtNPF6.5 mutant showed greatly reduced chloride content relative to wild type, and MtNPF6.5 expression was repressed by high chloride, indicating a primary role for MtNPF6.5 in root chloride uptake. MtNPF6.5 and MtNPF6.7 were repressed and induced by nitrate, respectively, and these responses required the transcription factor MtNLP1. Moreover, loss of MtNLP1 prevented the rapid switch from chloride to nitrate as the main anion in nitrate-starved plants after nitrate provision, providing insight into the underlying mechanism for nitrate preference. Sequence analysis revealed three sub-types of AtNPF6.3 orthologs based on their predicted substrate-binding residues: A (chloride selective), B (nitrate selective), and C (legume specific). The absence of B-type AtNPF6.3 homologues in early diverged plant lineages suggests that they evolved from a chloride-selective MtNPF6.5-like protein.
Identifiants
pubmed: 34523752
doi: 10.15252/embj.2020106847
pmc: PMC8561640
doi:
Substances chimiques
Anion Transport Proteins
0
Chlorides
0
NRT1.1 protein, Arabidopsis
0
Nitrates
0
Plant Proteins
0
Protein Isoforms
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e106847Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/L010305/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P012523/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/P012574/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/J004553/1
Pays : United Kingdom
Informations de copyright
© 2021 The Authors.
Références
Nat Plants. 2020 Jul;6(7):800-808
pubmed: 32514144
J Plant Res. 2015 Sep;128(5):839-48
pubmed: 26008190
FEBS Lett. 1995 Aug 21;370(3):264-8
pubmed: 7656990
Plant Cell. 2017 Oct;29(10):2581-2596
pubmed: 28887406
J Exp Bot. 2016 Dec 30;38(3):359-367
pubmed: 28040799
Plant Physiol. 2016 Feb;170(2):1014-29
pubmed: 26662602
J Exp Bot. 2020 Jul 25;71(15):4480-4494
pubmed: 32428238
Plant J. 2000 Feb;21(3):259-67
pubmed: 10758477
Front Physiol. 2015 Dec 18;6:386
pubmed: 26733879
Nat Plants. 2018 Nov;4(11):942-952
pubmed: 30297831
Plant Cell Physiol. 2015 Dec;56(12):2340-50
pubmed: 26443378
Plant Cell Environ. 2005 Apr;28(4):500-12
pubmed: 16229082
Nature. 2014 Mar 6;507(7490):68-72
pubmed: 24572366
Front Plant Sci. 2018 Dec 04;9:1668
pubmed: 30564251
Dev Cell. 2010 Jun 15;18(6):927-37
pubmed: 20627075
Plant Cell. 2012 Jan;24(1):245-58
pubmed: 22227893
Nature. 2006 Aug 24;442(7105):939-42
pubmed: 16878138
Plant Cell Environ. 2017 Jan;40(1):150-164
pubmed: 27676158
Nat Genet. 2019 Sep;51(9):1411-1422
pubmed: 31477930
Plant Cell. 2008 Dec;20(12):3289-99
pubmed: 19050168
Plant J. 2010 Nov;64(4):563-76
pubmed: 20822503
Plant Physiol. 1994 Nov;106(3):1131-1136
pubmed: 12232395
Plant Cell. 1999 May;11(5):865-74
pubmed: 10330471
J Exp Bot. 2017 Jun 1;68(12):3107-3113
pubmed: 28186545
Nature. 2014 Mar 6;507(7490):73-7
pubmed: 24572362
J Biol Chem. 1998 May 15;273(20):12017-23
pubmed: 9575142
Methods Mol Biol. 2011;678:179-90
pubmed: 20931380
Cell. 2009 Sep 18;138(6):1184-94
pubmed: 19766570
Sci Total Environ. 2020 Dec 1;746:141244
pubmed: 32768787
J Exp Bot. 2019 Nov 18;70(21):6363-6374
pubmed: 31414122
Plant Cell. 1996 Dec;8(12):2183-91
pubmed: 8989878
Nat Commun. 2013;4:1713
pubmed: 23591880
Mol Plant. 2013 Nov;6(6):1984-7
pubmed: 23645597
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9
pubmed: 18424797
Plant Physiol. 2012 Oct;160(2):906-16
pubmed: 22858636
EMBO J. 2003 Mar 3;22(5):1005-13
pubmed: 12606566
Plant Physiol. 2016 Oct;172(2):1237-1248
pubmed: 27543115
Methods Mol Biol. 2017;1610:25-37
pubmed: 28439855
Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19206-11
pubmed: 17148611
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15343-15353
pubmed: 32546525
Front Plant Sci. 2020 Jun 04;11:671
pubmed: 32582237
Plant Cell. 2013 Aug;25(8):3133-45
pubmed: 23995084
Plant Signal Behav. 2011 May;6(5):706-8
pubmed: 21448006
J Exp Bot. 2020 Jul 25;71(15):4380-4392
pubmed: 32206788
BMC Genomics. 2009 Nov 11;10:517
pubmed: 19906315
Nature. 2012 Aug 23;488(7412):531-4
pubmed: 22864417
Cell. 1993 Mar 12;72(5):705-13
pubmed: 8453665
J Exp Bot. 2017 Apr 1;68(8):1919-1926
pubmed: 27927992
Biochim Biophys Acta. 1968 Nov 5;163(3):339-53
pubmed: 5721897
J Exp Bot. 2016 Feb;67(3):873-91
pubmed: 26602947
Plants (Basel). 2021 Mar 23;10(3):
pubmed: 33806858
Front Plant Sci. 2019 Mar 27;10:384
pubmed: 30972097
Trends Plant Sci. 2014 Jan;19(1):5-9
pubmed: 24055139
J Membr Biol. 1995 May;145(1):49-66
pubmed: 7636885
Syst Biol. 2003 Oct;52(5):696-704
pubmed: 14530136
Plant Physiol. 2009 Sep;151(1):472-8
pubmed: 19633234
Mol Biol Evol. 2016 Apr;33(4):1126-30
pubmed: 26635364
Plant J. 2010 Apr 1;62(1):100-12
pubmed: 20088899
Plant Cell. 2004 Sep;16(9):2433-47
pubmed: 15319483
J Exp Bot. 2017 Jun 1;68(12):3057-3069
pubmed: 28379459
Plant Signal Behav. 2013;8(12):e26624
pubmed: 24084651
Elife. 2014 Mar 12;3:e01917
pubmed: 24623305
Front Plant Sci. 2020 Feb 26;11:144
pubmed: 32174938
Plant Physiol. 2013 Nov;163(3):1103-6
pubmed: 24089435
Nat Commun. 2018 Oct 8;9(1):4128
pubmed: 30297836
Mol Plant Microbe Interact. 2001 Jun;14(6):695-700
pubmed: 11386364
Plant J. 2014 Oct;80(2):230-41
pubmed: 25065551
Planta. 1969 Dec;84(4):311-23
pubmed: 24515496
Plant Physiol. 1997 May;114(1):137-44
pubmed: 9159946
J Plant Res. 2011 May;124(3):425-30
pubmed: 21052766
New Phytol. 2020 Jul;227(2):334-342
pubmed: 32170958
Front Plant Sci. 2020 May 26;11:442
pubmed: 32528483
New Phytol. 2016 Jul;211(1):149-58
pubmed: 26864608
Plant J. 2015 Oct;84(1):1-19
pubmed: 26296678
Plant Mol Biol. 2008 Oct;68(3):215-24
pubmed: 18563586
J Plant Res. 2015 Jul;128(4):679-86
pubmed: 25801271
Front Plant Sci. 2017 Jan 05;7:2013
pubmed: 28111585
FEBS Lett. 2019 Aug;593(15):2051-2059
pubmed: 31172512
Brief Bioinform. 2019 Jul 19;20(4):1160-1166
pubmed: 28968734
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86
pubmed: 22110026
New Phytol. 2019 Oct;224(1):117-131
pubmed: 31264223
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13182-13187
pubmed: 29180426
Structure. 2014 Aug 5;22(8):1152-1160
pubmed: 25066136
Front Plant Sci. 2019 Feb 15;10:80
pubmed: 30828339
EMBO J. 2021 Nov 2;40(21):e106847
pubmed: 34523752
Bioinformatics. 2012 Jul 1;28(13):1684-91
pubmed: 22531217
J Exp Bot. 2017 May 17;68(11):3007-3016
pubmed: 28505352
Plant J. 2008 Jun;54(5):820-8
pubmed: 18266918
Plant Physiol. 2017 Nov;175(3):1269-1282
pubmed: 28931627
Tree Physiol. 2004 Sep;24(9):1027-34
pubmed: 15234900
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Plant J. 2017 Oct;92(2):305-316
pubmed: 28771873