A Cooperative DNA Catalyst.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
29 09 2021
29 09 2021
Historique:
pubmed:
16
9
2021
medline:
1
3
2022
entrez:
15
9
2021
Statut:
ppublish
Résumé
DNA catalysts are fundamental building blocks for diverse molecular information-processing circuits. Allosteric control of DNA catalysts has been developed to activate desired catalytic pathways at desired times. Here we introduce a new type of DNA catalyst that we call a cooperative catalyst: a pair of reversible reactions are employed to drive a catalytic cycle in which two signal species, which can be interpreted as an activator and an input, both exhibit catalytic behavior for output production. We demonstrate the role of a dissociation toehold in controlling the kinetics of the reaction pathway and the significance of a wobble base pair in promoting the robustness of the activator. We show near-complete output production with input and activator concentrations that are 0.1 times the gate concentration. The system involves just a double-stranded gate species and a single-stranded fuel species, as simple as the seesaw DNA catalyst, which has no allosteric control. The simplicity and modularity of the design make the cooperative DNA catalyst an exciting addition to strand-displacement motifs for general-purpose computation and dynamics.
Identifiants
pubmed: 34524797
doi: 10.1021/jacs.1c07122
pmc: PMC8609974
mid: NIHMS1752634
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
15567-15571Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM112592
Pays : United States
Références
Annu Rev Biophys Biomol Struct. 2004;33:415-40
pubmed: 15139820
Biochemistry. 1997 Aug 26;36(34):10581-94
pubmed: 9265640
Nucleic Acids Res. 2013 Dec;41(22):10641-58
pubmed: 24019238
Nature. 2011 Jul 20;475(7356):368-72
pubmed: 21776082
Nucleic Acids Res. 2011 Sep 1;39(16):e110
pubmed: 21693555
J Am Chem Soc. 2006 Sep 20;128(37):12211-20
pubmed: 16967972
Nature. 2018 Jul;559(7714):370-376
pubmed: 29973727
Science. 2011 Jun 3;332(6034):1196-201
pubmed: 21636773
Nucleic Acids Res. 2005 Jul 25;33(13):4090-5
pubmed: 16043632
Phys Rev Lett. 2003 Mar 21;90(11):118102
pubmed: 12688969
Science. 2017 Dec 15;358(6369):
pubmed: 29242317
Nat Commun. 2020 May 22;11(1):2562
pubmed: 32444600
Nat Commun. 2014 Nov 10;5:5324
pubmed: 25382214
J Am Chem Soc. 2011 Feb 2;133(4):1077-86
pubmed: 21166410
Science. 2007 Nov 16;318(5853):1121-5
pubmed: 18006742
Nat Nanotechnol. 2013 Oct;8(10):755-62
pubmed: 24077029
J Am Chem Soc. 2008 Oct 22;130(42):13921-6
pubmed: 18823118
ACS Synth Biol. 2016 Aug 19;5(8):885-97
pubmed: 27111037
J Am Chem Soc. 2016 Oct 26;138(42):14076-14082
pubmed: 27704809
Nucleic Acids Res. 2010 Jul;38(12):4182-97
pubmed: 20194118
J Mol Biol. 2004 Sep 17;342(3):775-85
pubmed: 15342236
Science. 2006 Dec 8;314(5805):1585-8
pubmed: 17158324
J R Soc Interface. 2011 Sep 7;8(62):1281-97
pubmed: 21296792
J Am Chem Soc. 2020 Jul 1;142(26):11451-11463
pubmed: 32496760
Nature. 2000 Aug 10;406(6796):605-8
pubmed: 10949296
Nature. 2008 Jan 17;451(7176):318-22
pubmed: 18202654
J Am Chem Soc. 2012 Jan 11;134(1):263-71
pubmed: 22129141
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5386-91
pubmed: 23509255
J Am Chem Soc. 2009 Dec 2;131(47):17303-14
pubmed: 19894722
Nat Commun. 2017 Feb 23;8:14373
pubmed: 28230154
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5393-8
pubmed: 20203007