UTX condensation underlies its tumour-suppressive activity.
Animals
Cell Differentiation
Chromatin
DNA-Binding Proteins
/ metabolism
Embryonic Stem Cells
/ cytology
Genes, Tumor Suppressor
HEK293 Cells
Histone Demethylases
/ genetics
Humans
Intrinsically Disordered Proteins
/ genetics
Mice
Neoplasm Proteins
/ metabolism
Protein Processing, Post-Translational
THP-1 Cells
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
27
04
2020
accepted:
12
08
2021
pubmed:
17
9
2021
medline:
8
2
2022
entrez:
16
9
2021
Statut:
ppublish
Résumé
UTX (also known as KDM6A) encodes a histone H3K27 demethylase and is an important tumour suppressor that is frequently mutated in human cancers
Identifiants
pubmed: 34526716
doi: 10.1038/s41586-021-03903-7
pii: 10.1038/s41586-021-03903-7
pmc: PMC9008583
mid: NIHMS1790676
doi:
Substances chimiques
Chromatin
0
DNA-Binding Proteins
0
Intrinsically Disordered Proteins
0
KMT2D protein, human
0
Neoplasm Proteins
0
Histone Demethylases
EC 1.14.11.-
KDM6A protein, human
EC 1.14.11.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
726-731Subventions
Organisme : NIH HHS
ID : OD016446
Pays : United States
Organisme : NIH HHS
ID : S10 OD025156
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA044579
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA257936
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM133712
Pays : United States
Organisme : NIH HHS
ID : S10 OD016446
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM103540
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Wang, L. & Shilatifard, A. UTX mutations in human cancer. Cancer Cell 35, 168–176 (2019).
pubmed: 30753822
pmcid: 6589339
doi: 10.1016/j.ccell.2019.01.001
Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).
pubmed: 29736013
pmcid: 6029661
doi: 10.1038/s41588-018-0114-z
Andricovich, J. et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33, 512–526.e8 (2018).
pubmed: 29533787
pmcid: 5854186
doi: 10.1016/j.ccell.2018.02.003
Morales Torres, C., Laugesen, A. & Helin, K. Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells. PLoS ONE 8, e60020 (2013).
pubmed: 23573229
pmcid: 3616089
doi: 10.1371/journal.pone.0060020
Wang, C. et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc. Natl Acad. Sci. USA 109, 15324–15329 (2012).
pubmed: 22949634
pmcid: 3458330
doi: 10.1073/pnas.1204166109
Shpargel, K. B., Sengoku, T., Yokoyama, S. & Magnuson, T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 8, e1002964 (2012).
pubmed: 23028370
pmcid: 3459986
doi: 10.1371/journal.pgen.1002964
Shpargel, K. B., Starmer, J., Wang, C., Ge, K. & Magnuson, T. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc. Natl. Acad. Sci. USA 114, E9046–E9055 (2017).
pubmed: 29073101
pmcid: 5664495
doi: 10.1073/pnas.1705011114
Miller, S. A., Mohn, S. E. & Weinmann, A. S. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010).
pubmed: 21095589
pmcid: 3032266
doi: 10.1016/j.molcel.2010.10.028
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081
pmcid: 7434221
doi: 10.1038/nrm.2017.7
Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).
pubmed: 32719551
pmcid: 7425812
doi: 10.1038/s41556-020-0550-8
Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).
pubmed: 26412307
pmcid: 4609299
doi: 10.1016/j.molcel.2015.08.018
Alam, H. et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell 37, 599–617 (2020).
pubmed: 32243837
pmcid: 7178078
doi: 10.1016/j.ccell.2020.03.005
Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409–413 (2012).
pubmed: 22801502
doi: 10.1038/nature11272
Tran, N., Broun, A. & Ge, K. Lysine demethylase KDM6A in differentiation, development, and cancer. Mol. Cell. Biol. 40, e00341-20 (2020).
pubmed: 32817139
pmcid: 7523656
doi: 10.1128/MCB.00341-20
Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017).
pubmed: 28041848
doi: 10.1016/j.cell.2016.11.054
Kim, J. H. et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res. 74, 1705–1717 (2014).
pubmed: 24491801
pmcid: 3962500
doi: 10.1158/0008-5472.CAN-13-1896
Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).
pubmed: 15006351
pmcid: 4942132
doi: 10.1016/S0092-8674(04)00171-0
Wang, S. P. et al. A UTX–MLL4–p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol. Cell 67, 308–321.e6 (2017).
pubmed: 28732206
pmcid: 5574165
doi: 10.1016/j.molcel.2017.06.028
Tie, F., Banerjee, R., Conrad, P. A., Scacheri, P. C. & Harte, P. J. Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol. Cell. Biol. 32, 2323–2334 (2012).
pubmed: 22493065
pmcid: 3372260
doi: 10.1128/MCB.06392-11
Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).
pubmed: 27643841
pmcid: 5501173
doi: 10.1038/nmeth.3999
Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).
pubmed: 27886167
pmcid: 5143423
doi: 10.1038/cr.2016.137
Wang, Z., Zhang, Y. & Zang, C. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data. Bioinformatics https://doi.org/10.1093/bioinformatics/btab173 (2021).
Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).
pubmed: 27869828
doi: 10.1038/ng.3726
Gazova, I., Lengeling, A. & Summers, K. M. Lysine demethylases KDM6A and UTY: the X and Y of histone demethylation. Mol. Genet. Metabol. 127, 31–44 (2019).
doi: 10.1016/j.ymgme.2019.04.012
Li, X. et al. UTX is an escape from X-inactivation tumor-suppressor in B cell lymphoma. Nat. Commun. 9, 2720 (2018).
pubmed: 30006524
pmcid: 6045675
doi: 10.1038/s41467-018-05084-w
Sze, C. C. & Shilatifard, A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb. Perspect. Med. 6, a026427 (2016).
pubmed: 27638352
pmcid: 5088509
doi: 10.1101/cshperspect.a026427
Herz, H. M. et al. The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol. Cell. Biol. 30, 2485–2497 (2010).
pubmed: 20212086
pmcid: 2863695
doi: 10.1128/MCB.01633-09
Ma, L. et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol. Cell 81, 1682–1697.e7 (2021).
pubmed: 33651988
doi: 10.1016/j.molcel.2021.01.031
Fasciani, A. et al. MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat. Genet. 52, 1397–1411 (2020).
pubmed: 33169020
pmcid: 7610431
doi: 10.1038/s41588-020-00724-8
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).
pubmed: 30449618
doi: 10.1016/j.cell.2018.10.042
Benyoucef, A. et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev. 30, 508–521 (2016).
pubmed: 26944678
pmcid: 4782046
doi: 10.1101/gad.276790.115
Faralli, H. et al. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J. Clin. Invest. 126, 1555–1565 (2016).
pubmed: 26999603
pmcid: 4811158
doi: 10.1172/JCI83239
Beyaz, S. et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat. Immunol. 18, 184–195 (2017).
pubmed: 27992400
doi: 10.1038/ni.3644
Bogershausen, N. et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X-linked Kabuki syndrome subtype 2. Hum. Mutat. 37, 847–864 (2016).
pubmed: 27302555
doi: 10.1002/humu.23026
Yang, Z. et al. The DPY30 subunit in SET1/MLL complexes regulates the proliferation and differentiation of hematopoietic progenitor cells. Blood 124, 2025–2033 (2014).
pubmed: 25139354
pmcid: 4507038
doi: 10.1182/blood-2014-01-549220
Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525 (2011).
pubmed: 21335234
pmcid: 3572774
doi: 10.1016/j.cell.2011.01.020
Schulz, W. A., Lang, A., Koch, J. & Greife, A. The histone demethylase UTX/KDM6A in cancer: progress and puzzles. Int. J. Cancer 145, 614–620 (2019).
pubmed: 30628063
doi: 10.1002/ijc.32116
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
pubmed: 29961577
pmcid: 6063760
doi: 10.1016/j.cell.2018.06.006
Niaki, A. G. et al. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations. Mol. Cell 77, 82–94.e4 (2020).
pubmed: 31630970
doi: 10.1016/j.molcel.2019.09.022
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
pubmed: 28076807
pmcid: 5232785
doi: 10.1016/j.bpj.2016.11.3200
Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
pubmed: 6828386
pmcid: 325809
doi: 10.1093/nar/11.5.1475
Fujioka, A. et al. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281, 8917–8926 (2006).
pubmed: 16418172
doi: 10.1074/jbc.M509344200
[No authors listed] Illuminating the dark proteome. Cell 166, 1074–1077 (2016).
Rossow, M. J., Sasaki, J. M., Digman, M. A. & Gratton, E. Raster image correlation spectroscopy in live cells. Nat. Protoc. 5, 1761–1774 (2010).
pubmed: 21030952
pmcid: 3089972
doi: 10.1038/nprot.2010.122
Digman, M. A. & Gratton, E. Analysis of diffusion and binding in cells using the RICS approach. Microsc. Res. Tech. 72, 323–332 (2009).
pubmed: 19067357
pmcid: 4364519
doi: 10.1002/jemt.20655
Day, C. A., Kraft, L. J., Kang, M. & Kenworthy, A. K. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP). Curr. Protoc. Cytometry Ch. 2, Unit2.19 (2012).
Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).
pubmed: 23430654
pmcid: 3974810
doi: 10.1126/science.1229386
Judd, J. et al. A rapid, sensitive, scalable method for precision run-on sequencing (PRO-seq). Preprint at bioRxiv https://doi.org/10.1101/2020.05.18.102277 (2020).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
pubmed: 21816040
pmcid: 3163565
doi: 10.1186/1471-2105-12-323
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956
doi: 10.1038/nprot.2008.211
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313
pmcid: 6447622
doi: 10.1038/s41467-019-09234-6
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982
pmcid: 2592715
doi: 10.1186/gb-2008-9-9-r137
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-seq data. Bioinformatics 25, 1952–1958 (2009).
pubmed: 19505939
pmcid: 2732366
doi: 10.1093/bioinformatics/btp340
Juric, I. et al. MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput. Biol. 15, e1006982 (2019).
pubmed: 30986246
pmcid: 6483256
doi: 10.1371/journal.pcbi.1006982
Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU Epigenome Browser update 2019. Nucleic Acids Res. 47, W158–W165 (2019).
pubmed: 31165883
pmcid: 6602459
doi: 10.1093/nar/gkz348
Wang, S. et al. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Res. 26, 1417–1429 (2016).
pubmed: 27466232
pmcid: 5052056
doi: 10.1101/gr.201574.115
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
pubmed: 26619908
pmcid: 4665391
doi: 10.1186/s13059-015-0831-x