UTX condensation underlies its tumour-suppressive activity.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2021
Historique:
received: 27 04 2020
accepted: 12 08 2021
pubmed: 17 9 2021
medline: 8 2 2022
entrez: 16 9 2021
Statut: ppublish

Résumé

UTX (also known as KDM6A) encodes a histone H3K27 demethylase and is an important tumour suppressor that is frequently mutated in human cancers

Identifiants

pubmed: 34526716
doi: 10.1038/s41586-021-03903-7
pii: 10.1038/s41586-021-03903-7
pmc: PMC9008583
mid: NIHMS1790676
doi:

Substances chimiques

Chromatin 0
DNA-Binding Proteins 0
Intrinsically Disordered Proteins 0
KMT2D protein, human 0
Neoplasm Proteins 0
Histone Demethylases EC 1.14.11.-
KDM6A protein, human EC 1.14.11.-

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

726-731

Subventions

Organisme : NIH HHS
ID : OD016446
Pays : United States
Organisme : NIH HHS
ID : S10 OD025156
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA044579
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA257936
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM133712
Pays : United States
Organisme : NIH HHS
ID : S10 OD016446
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM103540
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Wang, L. & Shilatifard, A. UTX mutations in human cancer. Cancer Cell 35, 168–176 (2019).
pubmed: 30753822 pmcid: 6589339 doi: 10.1016/j.ccell.2019.01.001
Gozdecka, M. et al. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat. Genet. 50, 883–894 (2018).
pubmed: 29736013 pmcid: 6029661 doi: 10.1038/s41588-018-0114-z
Andricovich, J. et al. Loss of KDM6A activates super-enhancers to induce gender-specific squamous-like pancreatic cancer and confers sensitivity to BET inhibitors. Cancer Cell 33, 512–526.e8 (2018).
pubmed: 29533787 pmcid: 5854186 doi: 10.1016/j.ccell.2018.02.003
Morales Torres, C., Laugesen, A. & Helin, K. Utx is required for proper induction of ectoderm and mesoderm during differentiation of embryonic stem cells. PLoS ONE 8, e60020 (2013).
pubmed: 23573229 pmcid: 3616089 doi: 10.1371/journal.pone.0060020
Wang, C. et al. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc. Natl Acad. Sci. USA 109, 15324–15329 (2012).
pubmed: 22949634 pmcid: 3458330 doi: 10.1073/pnas.1204166109
Shpargel, K. B., Sengoku, T., Yokoyama, S. & Magnuson, T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 8, e1002964 (2012).
pubmed: 23028370 pmcid: 3459986 doi: 10.1371/journal.pgen.1002964
Shpargel, K. B., Starmer, J., Wang, C., Ge, K. & Magnuson, T. UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc. Natl. Acad. Sci. USA 114, E9046–E9055 (2017).
pubmed: 29073101 pmcid: 5664495 doi: 10.1073/pnas.1705011114
Miller, S. A., Mohn, S. E. & Weinmann, A. S. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40, 594–605 (2010).
pubmed: 21095589 pmcid: 3032266 doi: 10.1016/j.molcel.2010.10.028
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).
pubmed: 28225081 pmcid: 7434221 doi: 10.1038/nrm.2017.7
Li, W. et al. Biophysical properties of AKAP95 protein condensates regulate splicing and tumorigenesis. Nat. Cell Biol. 22, 960–972 (2020).
pubmed: 32719551 pmcid: 7425812 doi: 10.1038/s41556-020-0550-8
Lin, Y., Protter, D. S., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).
pubmed: 26412307 pmcid: 4609299 doi: 10.1016/j.molcel.2015.08.018
Alam, H. et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell 37, 599–617 (2020).
pubmed: 32243837 pmcid: 7178078 doi: 10.1016/j.ccell.2020.03.005
Mansour, A. A. et al. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature 488, 409–413 (2012).
pubmed: 22801502 doi: 10.1038/nature11272
Tran, N., Broun, A. & Ge, K. Lysine demethylase KDM6A in differentiation, development, and cancer. Mol. Cell. Biol. 40, e00341-20 (2020).
pubmed: 32817139 pmcid: 7523656 doi: 10.1128/MCB.00341-20
Shin, Y. et al. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168, 159–171.e14 (2017).
pubmed: 28041848 doi: 10.1016/j.cell.2016.11.054
Kim, J. H. et al. UTX and MLL4 coordinately regulate transcriptional programs for cell proliferation and invasiveness in breast cancer cells. Cancer Res. 74, 1705–1717 (2014).
pubmed: 24491801 pmcid: 3962500 doi: 10.1158/0008-5472.CAN-13-1896
Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).
pubmed: 15006351 pmcid: 4942132 doi: 10.1016/S0092-8674(04)00171-0
Wang, S. P. et al. A UTX–MLL4–p300 transcriptional regulatory network coordinately shapes active enhancer landscapes for eliciting transcription. Mol. Cell 67, 308–321.e6 (2017).
pubmed: 28732206 pmcid: 5574165 doi: 10.1016/j.molcel.2017.06.028
Tie, F., Banerjee, R., Conrad, P. A., Scacheri, P. C. & Harte, P. J. Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol. Cell. Biol. 32, 2323–2334 (2012).
pubmed: 22493065 pmcid: 3372260 doi: 10.1128/MCB.06392-11
Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).
pubmed: 27643841 pmcid: 5501173 doi: 10.1038/nmeth.3999
Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).
pubmed: 27886167 pmcid: 5143423 doi: 10.1038/cr.2016.137
Wang, Z., Zhang, Y. & Zang, C. BART3D: inferring transcriptional regulators associated with differential chromatin interactions from Hi-C data. Bioinformatics https://doi.org/10.1093/bioinformatics/btab173 (2021).
Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 49, 10–16 (2017).
pubmed: 27869828 doi: 10.1038/ng.3726
Gazova, I., Lengeling, A. & Summers, K. M. Lysine demethylases KDM6A and UTY: the X and Y of histone demethylation. Mol. Genet. Metabol. 127, 31–44 (2019).
doi: 10.1016/j.ymgme.2019.04.012
Li, X. et al. UTX is an escape from X-inactivation tumor-suppressor in B cell lymphoma. Nat. Commun. 9, 2720 (2018).
pubmed: 30006524 pmcid: 6045675 doi: 10.1038/s41467-018-05084-w
Sze, C. C. & Shilatifard, A. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. Cold Spring Harb. Perspect. Med. 6, a026427 (2016).
pubmed: 27638352 pmcid: 5088509 doi: 10.1101/cshperspect.a026427
Herz, H. M. et al. The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila. Mol. Cell. Biol. 30, 2485–2497 (2010).
pubmed: 20212086 pmcid: 2863695 doi: 10.1128/MCB.01633-09
Ma, L. et al. Co-condensation between transcription factor and coactivator p300 modulates transcriptional bursting kinetics. Mol. Cell 81, 1682–1697.e7 (2021).
pubmed: 33651988 doi: 10.1016/j.molcel.2021.01.031
Fasciani, A. et al. MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat. Genet. 52, 1397–1411 (2020).
pubmed: 33169020 pmcid: 7610431 doi: 10.1038/s41588-020-00724-8
Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).
pubmed: 30449618 doi: 10.1016/j.cell.2018.10.042
Benyoucef, A. et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev. 30, 508–521 (2016).
pubmed: 26944678 pmcid: 4782046 doi: 10.1101/gad.276790.115
Faralli, H. et al. UTX demethylase activity is required for satellite cell-mediated muscle regeneration. J. Clin. Invest. 126, 1555–1565 (2016).
pubmed: 26999603 pmcid: 4811158 doi: 10.1172/JCI83239
Beyaz, S. et al. The histone demethylase UTX regulates the lineage-specific epigenetic program of invariant natural killer T cells. Nat. Immunol. 18, 184–195 (2017).
pubmed: 27992400 doi: 10.1038/ni.3644
Bogershausen, N. et al. Mutation update for Kabuki syndrome genes KMT2D and KDM6A and further delineation of X-linked Kabuki syndrome subtype 2. Hum. Mutat. 37, 847–864 (2016).
pubmed: 27302555 doi: 10.1002/humu.23026
Yang, Z. et al. The DPY30 subunit in SET1/MLL complexes regulates the proliferation and differentiation of hematopoietic progenitor cells. Blood 124, 2025–2033 (2014).
pubmed: 25139354 pmcid: 4507038 doi: 10.1182/blood-2014-01-549220
Jiang, H. et al. Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525 (2011).
pubmed: 21335234 pmcid: 3572774 doi: 10.1016/j.cell.2011.01.020
Schulz, W. A., Lang, A., Koch, J. & Greife, A. The histone demethylase UTX/KDM6A in cancer: progress and puzzles. Int. J. Cancer 145, 614–620 (2019).
pubmed: 30628063 doi: 10.1002/ijc.32116
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699.e16 (2018).
pubmed: 29961577 pmcid: 6063760 doi: 10.1016/j.cell.2018.06.006
Niaki, A. G. et al. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations. Mol. Cell 77, 82–94.e4 (2020).
pubmed: 31630970 doi: 10.1016/j.molcel.2019.09.022
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
pubmed: 28076807 pmcid: 5232785 doi: 10.1016/j.bpj.2016.11.3200
Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).
pubmed: 6828386 pmcid: 325809 doi: 10.1093/nar/11.5.1475
Fujioka, A. et al. Dynamics of the Ras/ERK MAPK cascade as monitored by fluorescent probes. J. Biol. Chem. 281, 8917–8926 (2006).
pubmed: 16418172 doi: 10.1074/jbc.M509344200
[No authors listed] Illuminating the dark proteome. Cell 166, 1074–1077 (2016).
Rossow, M. J., Sasaki, J. M., Digman, M. A. & Gratton, E. Raster image correlation spectroscopy in live cells. Nat. Protoc. 5, 1761–1774 (2010).
pubmed: 21030952 pmcid: 3089972 doi: 10.1038/nprot.2010.122
Digman, M. A. & Gratton, E. Analysis of diffusion and binding in cells using the RICS approach. Microsc. Res. Tech. 72, 323–332 (2009).
pubmed: 19067357 pmcid: 4364519 doi: 10.1002/jemt.20655
Day, C. A., Kraft, L. J., Kang, M. & Kenworthy, A. K. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP). Curr. Protoc. Cytometry Ch. 2, Unit2.19 (2012).
Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013).
pubmed: 23430654 pmcid: 3974810 doi: 10.1126/science.1229386
Judd, J. et al. A rapid, sensitive, scalable method for precision run-on sequencing (PRO-seq). Preprint at bioRxiv https://doi.org/10.1101/2020.05.18.102277 (2020).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).
pubmed: 21816040 pmcid: 3163565 doi: 10.1186/1471-2105-12-323
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
pubmed: 19131956 doi: 10.1038/nprot.2008.211
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313 pmcid: 6447622 doi: 10.1038/s41467-019-09234-6
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-seq data. Bioinformatics 25, 1952–1958 (2009).
pubmed: 19505939 pmcid: 2732366 doi: 10.1093/bioinformatics/btp340
Juric, I. et al. MAPS: model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. PLoS Comput. Biol. 15, e1006982 (2019).
pubmed: 30986246 pmcid: 6483256 doi: 10.1371/journal.pcbi.1006982
Li, D., Hsu, S., Purushotham, D., Sears, R. L. & Wang, T. WashU Epigenome Browser update 2019. Nucleic Acids Res. 47, W158–W165 (2019).
pubmed: 31165883 pmcid: 6602459 doi: 10.1093/nar/gkz348
Wang, S. et al. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Res. 26, 1417–1429 (2016).
pubmed: 27466232 pmcid: 5052056 doi: 10.1101/gr.201574.115
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).
pubmed: 26619908 pmcid: 4665391 doi: 10.1186/s13059-015-0831-x

Auteurs

Bi Shi (B)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Wei Li (W)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Yansu Song (Y)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Zhenjia Wang (Z)

Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Rui Ju (R)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Aleksandra Ulman (A)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Jing Hu (J)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Francesco Palomba (F)

Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA.

Yanfang Zhao (Y)

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.

John Philip Le (JP)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

William Jarrard (W)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

David Dimoff (D)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.

Michelle A Digman (MA)

Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA.

Enrico Gratton (E)

Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA.

Chongzhi Zang (C)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA.
Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA.
UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA.

Hao Jiang (H)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA. hj8d@virginia.edu.
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA. hj8d@virginia.edu.
UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA. hj8d@virginia.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH