Plant growth-promoting and non-promoting rhizobacteria from avocado trees differentially emit volatiles that influence growth of Arabidopsis thaliana.
Bacterial volatiles
Persea americana
Plant growth
Rhizobacteria
Volatiles signalling
Journal
Protoplasma
ISSN: 1615-6102
Titre abrégé: Protoplasma
Pays: Austria
ID NLM: 9806853
Informations de publication
Date de publication:
Jul 2022
Jul 2022
Historique:
received:
14
05
2021
accepted:
03
09
2021
pubmed:
17
9
2021
medline:
14
6
2022
entrez:
16
9
2021
Statut:
ppublish
Résumé
Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.
Identifiants
pubmed: 34529144
doi: 10.1007/s00709-021-01705-2
pii: 10.1007/s00709-021-01705-2
doi:
Substances chimiques
Indoleacetic Acids
0
Volatile Organic Compounds
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
835-854Subventions
Organisme : Asociación de Productores y Empacadores Exportadores de Aguacate de México A.C. (APEAM)
ID : grant no. 42002
Organisme : consejo nacional de ciencia y tecnología (conacyt, méxico)
ID : grant no. PDCPN-2015-882
Organisme : consejo nacional de ciencia y tecnología (conacyt, méxico)
ID : FORDECYT-PRONACES 292399
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Ahmad M, Zahir ZA, Khalid M et al (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem PPB 63:170–176. https://doi.org/10.1016/j.plaphy.2012.11.024
doi: 10.1016/j.plaphy.2012.11.024
pubmed: 23262185
Anzola JM, Sieberer T, Ortbauer M et al (2010) Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proc Natl Acad Sci U S A 107:10308–10313. https://doi.org/10.1073/pnas.0913918107
doi: 10.1073/pnas.0913918107
pubmed: 20479223
pmcid: 2890463
Arora NK, Khare E, Oh JH et al (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585. https://doi.org/10.1007/s11274-007-9505-5
doi: 10.1007/s11274-007-9505-5
Atkinson JA, Rasmussen A, Traini R et al (2014) Branching Out in Roots: Uncovering Form, Function, and Regulation. Plant Physiol 166:538–550. https://doi.org/10.1104/pp.114.245423
doi: 10.1104/pp.114.245423
pubmed: 25136060
pmcid: 4213086
Bailly A, Groenhagen U, Schulz S et al (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J Cell Mol Biol 80:758–771. https://doi.org/10.1111/tpj.12666
doi: 10.1111/tpj.12666
Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
doi: 10.1146/annurev.arplant.57.032905.105159
pubmed: 16669762
Bhattacharyya D, Garladinne M, Lee YH (2015) Volatile indole produced by Rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 34:158–168. https://doi.org/10.1007/s00344-014-9453-x
doi: 10.1007/s00344-014-9453-x
Blom D, Fabbri C, Connor EC et al (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058. https://doi.org/10.1111/j.1462-2920.2011.02582.x
doi: 10.1111/j.1462-2920.2011.02582.x
pubmed: 21933319
Brock AK, Berger B, Mewis I, Ruppel S (2013) Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb Ecol 65:661–670. https://doi.org/10.1007/s00248-012-0146-3
doi: 10.1007/s00248-012-0146-3
pubmed: 23242136
Buśko M, Kulik T, Ostrowska A et al (2014) Quantitative volatile compound profiles in fungal cultures of three different Fusarium graminearum chemotypes. FEMS Microbiol Lett 359:85–93. https://doi.org/10.1111/1574-6968.12569
doi: 10.1111/1574-6968.12569
pubmed: 25132145
Camarena-Pozos DA, Flores-Núñez VM, López MG et al (2019) Smells from the desert: Microbial volatiles that affect plant growth and development of native and non-native plant species. Plant Cell Environ 42:1368–1380. https://doi.org/10.1111/pce.13476
doi: 10.1111/pce.13476
pubmed: 30378133
Campos Ziegenbein F, Hanssen H-P, König WA (2006) Secondary metabolites from Ganoderma lucidum and Spongiporus leucomallellus. Phytochemistry 67:202–211. https://doi.org/10.1016/j.phytochem.2005.10.025
doi: 10.1016/j.phytochem.2005.10.025
pubmed: 16356517
Castulo-Rubio DY, Alejandre-Ramírez NA, del Orozco-Mosqueda M, C, et al (2015) Volatile organic compounds produced by the Rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul 34:611–623. https://doi.org/10.1007/s00344-015-9495-8
doi: 10.1007/s00344-015-9495-8
Chen Y, Palta JA, Wu P, Siddique KHM (2019) Crop root systems and rhizosphere interactions. Plant Soil 439:1–5. https://doi.org/10.1007/s11104-019-04154-2
doi: 10.1007/s11104-019-04154-2
Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910. https://doi.org/10.1007/s10529-011-0662-0
doi: 10.1007/s10529-011-0662-0
pubmed: 21660571
Contesto C, Milesi S, Mantelin S et al (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470. https://doi.org/10.1007/s00425-010-1264-0
doi: 10.1007/s00425-010-1264-0
pubmed: 20844890
Cordovez V, Mommer L, Moisan K, et al (2017) Plant phenotypic and transcriptional changes induced by volatiles from the fungal root pathogen Rhizoctonia solani. Front Plant Sci 8: https://doi.org/10.3389/fpls.2017.01262
Davis TS, Boundy-Mills K, Landolt PJ (2012) Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb Ecol 64:1056–1063. https://doi.org/10.1007/s00248-012-0074-2
doi: 10.1007/s00248-012-0074-2
pubmed: 22644482
De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439. https://doi.org/10.1016/j.tplants.2006.07.003
doi: 10.1016/j.tplants.2006.07.003
pubmed: 16890475
Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865. https://doi.org/10.1002/cbdv.200590062
doi: 10.1002/cbdv.200590062
pubmed: 17193176
Ditengou FA, Müller A, Rosenkranz M et al (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279. https://doi.org/10.1038/ncomms7279
doi: 10.1038/ncomms7279
pubmed: 25703994
Ercolini D, Russo F, Nasi A et al (2009) Mesophilic and Psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 75:1990–2001. https://doi.org/10.1128/AEM.02762-08
doi: 10.1128/AEM.02762-08
pubmed: 19201980
pmcid: 2663181
FAO (2021) Food and Agriculture Organization of the United Nations. http://www.fao.org/home/en/ . Accessed 12 May 2021
Ferreira CMH, Soares HMVM, Soares EV (2019) Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ 682:779–799. https://doi.org/10.1016/j.scitotenv.2019.04.225
doi: 10.1016/j.scitotenv.2019.04.225
pubmed: 31146074
Fincheira P, Quiroz A (2018) Microbial volatiles as plant growth inducers. Microbiol Res 208:63–75. https://doi.org/10.1016/j.micres.2018.01.002
doi: 10.1016/j.micres.2018.01.002
pubmed: 29551213
Fitter A, Williamson L, Linkohr B, Leyser O (2002) Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proc R Soc B Biol Sci 269:2017–2022. https://doi.org/10.1098/rspb.2002.2120
doi: 10.1098/rspb.2002.2120
Flores-Félix JD, Silva LR, Rivera LP, et al (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS ONE 10: https://doi.org/10.1371/journal.pone.0122281
Garbeva P, Hordijk C, Gerards S, De Boer W (2014) Volatiles produced by the mycophagous soil bacterium Collimonas. FEMS Microbiol Ecol 87:639–649. https://doi.org/10.1111/1574-6941.12252
doi: 10.1111/1574-6941.12252
pubmed: 24329759
García-Fraile P, Menéndez E, Rivas R et al (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205. https://doi.org/10.3934/bioeng.2015.3.183
doi: 10.3934/bioeng.2015.3.183
Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E et al (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512. https://doi.org/10.1111/nph.13725
doi: 10.1111/nph.13725
pubmed: 26568541
Gérard F, Blitz-Frayret C, Hinsinger P, Pagès L (2017) Modelling the interactions between root system architecture, root functions and reactive transport processes in soil. Plant Soil 413:161–180. https://doi.org/10.1007/s11104-016-3092-x
doi: 10.1007/s11104-016-3092-x
Giehl RFH, von Wirén N (2014) Root nutrient foraging. Plant Physiol 166:509–517. https://doi.org/10.1104/pp.114.245225
doi: 10.1104/pp.114.245225
pubmed: 25082891
pmcid: 4213083
Groenhagen U, Baumgartner R, Bailly A et al (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906. https://doi.org/10.1007/s10886-013-0315-y
doi: 10.1007/s10886-013-0315-y
pubmed: 23832658
Guevara-Avendaño E, Bejarano-Bolívar AA, Kiel-Martínez A-L et al (2019) Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiol Res 219:74–83. https://doi.org/10.1016/j.micres.2018.11.009
doi: 10.1016/j.micres.2018.11.009
pubmed: 30642469
Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J et al (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83. https://doi.org/10.1007/s13199-010-0066-2
doi: 10.1007/s13199-010-0066-2
Hayashi K, Hasegawa J, Matsunaga S (2013) The boundary of the meristematic and elongation zones in roots: endoreduplication precedes rapid cell expansion. Sci Rep 3:2723. https://doi.org/10.1038/srep02723
doi: 10.1038/srep02723
pubmed: 24121463
pmcid: 3796303
Hernández-Calderón E, Aviles-Garcia ME, Castulo-Rubio DY et al (2018) Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol Biol 96:291–304. https://doi.org/10.1007/s11103-017-0694-5
doi: 10.1007/s11103-017-0694-5
pubmed: 29330694
Hettinga KA, van Valenberg HJF, Lam TJGM, van Hooijdonk ACM (2008) Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J Dairy Sci 91:3834–3839. https://doi.org/10.3168/jds.2007-0941
doi: 10.3168/jds.2007-0941
pubmed: 18832205
Holighaus G, Weißbecker B, von Fragstein M, Schütz S (2014) Ubiquitous eight-carbon volatiles of fungi are infochemicals for a specialist fungivore. Chemoecology 24:57–66. https://doi.org/10.1007/s00049-014-0151-8
doi: 10.1007/s00049-014-0151-8
Ishimaru Y, Hayashi K, Suzuki T et al (2018) Jasmonic acid inhibits auxin-induced lateral rooting independently of the CORONATINE INSENSITIVE1 receptor. Plant Physiol 177:1704–1716. https://doi.org/10.1104/pp.18.00357
doi: 10.1104/pp.18.00357
pubmed: 29934297
pmcid: 6084677
Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6: https://doi.org/10.3389/fpls.2015.00151
Kumar H, Bajpai VK, Dubey RC et al (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598. https://doi.org/10.1016/j.cropro.2010.01.002
doi: 10.1016/j.cropro.2010.01.002
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
doi: 10.1093/molbev/msw054
pubmed: 27004904
pmcid: 8210823
Lavakush YJ, Verma JP et al (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128. https://doi.org/10.1016/j.ecoleng.2013.10.013
doi: 10.1016/j.ecoleng.2013.10.013
Lavenus J, Goh T, Roberts I et al (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18:450–458. https://doi.org/10.1016/j.tplants.2013.04.006
doi: 10.1016/j.tplants.2013.04.006
pubmed: 23701908
Ledger T, Rojas S, Timmermann T et al (2016) Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front Microbiol 7:1838. https://doi.org/10.3389/fmicb.2016.01838
doi: 10.3389/fmicb.2016.01838
pubmed: 27909432
pmcid: 5112238
Lee B, Farag MA, Park HB et al (2012) Induced resistance by a long-chain bacterial volatile: elicitation of plant systemic defense by a C13 volatile produced by Paenibacillus polymyxa. PLoS ONE 7:e48744. https://doi.org/10.1371/journal.pone.0048744
doi: 10.1371/journal.pone.0048744
pubmed: 23209558
pmcid: 3509098
Lemfack MC, Gohlke B-O, Toguem SMT et al (2018) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 46:D1261–D1265. https://doi.org/10.1093/nar/gkx1016
doi: 10.1093/nar/gkx1016
pubmed: 29106611
Liu Y, Donner E, Lombi E et al (2013) Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant. Plant Soil 372:125–136. https://doi.org/10.1007/s11104-012-1582-z
doi: 10.1007/s11104-012-1582-z
Lu C, Chen M-X, Liu R, et al (2019) Abscisic acid regulates auxin distribution to mediate maize lateral root development under salt stress. Front Plant Sci 10: https://doi.org/10.3389/fpls.2019.00716
Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Dev Camb Engl 124:33–44
Martínez-Viveros O, Jorquera MA, Crowley DE et al (2010) Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. J Soil Sci Plant Nutr 10:293–319. https://doi.org/10.4067/S0718-95162010000100006
doi: 10.4067/S0718-95162010000100006
Meldau DG, Long HH, Baldwin IT (2012) A native plant growth promoting bacterium, Bacillus sp. B55, rescues growth performance of an ethylene-insensitive plant genotype in nature. Front Plant Sci 3: https://doi.org/10.3389/fpls.2012.00112
Morita T, Tanaka I, Ryuda N et al (2019) Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon 5:e01817. https://doi.org/10.1016/j.heliyon.2019.e01817
doi: 10.1016/j.heliyon.2019.e01817
pubmed: 31206088
pmcid: 6558263
Naznin HA, Kiyohara D, Kimura M et al (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 9:e86882. https://doi.org/10.1371/journal.pone.0086882
doi: 10.1371/journal.pone.0086882
pubmed: 24475190
pmcid: 3903595
Nicholson TP, Rudd BA, Dawson M et al (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178. https://doi.org/10.1016/s1074-5521(00)90064-4
doi: 10.1016/s1074-5521(00)90064-4
pubmed: 11251290
Orman-Ligeza B, Parizot B, Gantet PP et al (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18:459–467. https://doi.org/10.1016/j.tplants.2013.04.010
doi: 10.1016/j.tplants.2013.04.010
pubmed: 23727199
Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712
doi: 10.4161/psb.4.8.9047
Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265
doi: 10.4161/psb.3.4.5204
Park Y-S, Dutta S, Ann M et al (2015) Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem Biophys Res Commun 461:361–365. https://doi.org/10.1016/j.bbrc.2015.04.039
doi: 10.1016/j.bbrc.2015.04.039
pubmed: 25892516
Péret B, Larrieu A, Bennett MJ (2009) Lateral root emergence: a difficult birth. J Exp Bot 60:3637–3643. https://doi.org/10.1093/jxb/erp232
doi: 10.1093/jxb/erp232
pubmed: 19635746
Piechulla B, Degenhardt J (2014) The emerging importance of microbial volatile organic compounds. Plant Cell Environ 37:811–812. https://doi.org/10.1111/pce.12254
doi: 10.1111/pce.12254
pubmed: 24329873
Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40:2042–2067. https://doi.org/10.1111/pce.13011
doi: 10.1111/pce.13011
pubmed: 28643880
Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266. https://doi.org/10.1016/j.tplants.2004.04.008
doi: 10.1016/j.tplants.2004.04.008
pubmed: 15165555
Qessaoui R, Bouharroud R, Furze JN et al (2019) Applications of new Rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci Rep 9:12832. https://doi.org/10.1038/s41598-019-49216-8
doi: 10.1038/s41598-019-49216-8
pubmed: 31492898
pmcid: 6731270
Raya González J, Velázquez Becerra C, Barrera Ortiz S et al (2017) N, N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana. Protoplasma 254:1399–1410. https://doi.org/10.1007/s00709-016-1031-6
doi: 10.1007/s00709-016-1031-6
pubmed: 27696021
Raya-González J, Ortiz-Castro R, López-Bucio J (2019) Determinate root development in the halted primary root1 mutant of Arabidopsis correlates with death of root initial cells and an enhanced auxin response. Protoplasma 256:1657–1666. https://doi.org/10.1007/s00709-019-01409-8
doi: 10.1007/s00709-019-01409-8
pubmed: 31273542
Raya-González J, Pelagio-Flores R, López-Bucio J (2012) The jasmonate receptor COI1 plays a role in jasmonate-induced lateral root formation and lateral root positioning in Arabidopsis thaliana. J Plant Physiol 169:1348–1358. https://doi.org/10.1016/j.jplph.2012.05.002
doi: 10.1016/j.jplph.2012.05.002
pubmed: 22658222
Raya-González J, Velázquez-Becerra C, Barrera-Ortiz S et al (2017) N, N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana. Protoplasma 254:1399–1410. https://doi.org/10.1007/s00709-016-1031-6
doi: 10.1007/s00709-016-1031-6
pubmed: 27696021
Robson F, Okamoto H, Patrick E et al (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160. https://doi.org/10.1105/tpc.109.067728
doi: 10.1105/tpc.109.067728
pubmed: 20435902
pmcid: 2879735
Ryu C-M, Farag MA, Hu C-H et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932. https://doi.org/10.1073/pnas.0730845100
doi: 10.1073/pnas.0730845100
pubmed: 12684534
pmcid: 153657
Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem PPB 49:1177–1182. https://doi.org/10.1016/j.plaphy.2011.07.016
doi: 10.1016/j.plaphy.2011.07.016
pubmed: 21843946
Schleibinger H, Laussmann D, Brattig C et al (2005) Emission patterns and emission rates of MVOC and the possibility for predicting hidden mold damage? Indoor Air 15(Suppl 9):98–104. https://doi.org/10.1111/j.1600-0668.2005.00349.x
doi: 10.1111/j.1600-0668.2005.00349.x
pubmed: 15910535
Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842. https://doi.org/10.1039/b507392h
doi: 10.1039/b507392h
pubmed: 17653361
Sharifi R, Ryu C-M (2018) Revisiting bacterial volatile-mediated plant growth promotion: lessons from the past and objectives for the future. Ann Bot 122:349–358. https://doi.org/10.1093/aob/mcy108
doi: 10.1093/aob/mcy108
pubmed: 29982345
pmcid: 6110341
Sheoran N, Valiya Nadakkakath A, Munjal V et al (2015) Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol Res 173:66–78. https://doi.org/10.1016/j.micres.2015.02.001
doi: 10.1016/j.micres.2015.02.001
pubmed: 25801973
Shi C-L, Park H-B, Lee JS et al (2010) Inhibition of primary roots and stimulation of lateral root development in Arabidopsis thaliana by the rhizobacterium Serratia marcescens 90–166 is through both auxin-dependent and -independent signaling pathways. Mol Cells 29:251–258. https://doi.org/10.1007/s10059-010-0032-0
doi: 10.1007/s10059-010-0032-0
pubmed: 20108166
Sieberer T, Hauser M-T, Seifert GJ, Luschnig C (2003) PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation. Curr Biol 13:837–842. https://doi.org/10.1016/S0960-9822(03)00327-0
doi: 10.1016/S0960-9822(03)00327-0
pubmed: 12747832
Somova LA, Pechurkin NS, Sarangova AB, Pisman TI (2001) Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems. Adv Space Res 27:1611–1615. https://doi.org/10.1016/S0273-1177(01)00257-5
doi: 10.1016/S0273-1177(01)00257-5
pubmed: 11695444
Song GC, Ryu C-M (2013) Two Volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14:9803–9819. https://doi.org/10.3390/ijms14059803
doi: 10.3390/ijms14059803
pubmed: 23698768
pmcid: 3676814
Spaepen S, Vanderleyden J, Okon Y (2009) Chapter 7 Plant growth-promoting actions of rhizobacteria. In: Advances in Botanical Research. Academic Press, 283–320
Stolz JF (2017) Gaia and her microbiome. FEMS Microbiol Ecol 93: https://doi.org/10.1093/femsec/fiw247
Sukumar P, Legué V, Vayssières A et al (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919. https://doi.org/10.1111/pce.12036
doi: 10.1111/pce.12036
pubmed: 23145472
Sunesson A, Vaes W, Nilsson C et al (1995) Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 61:2911–2918
doi: 10.1128/aem.61.8.2911-2918.1995
Tahir HAS, Gu Q, Wu H, et al (2017a) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8: https://doi.org/10.3389/fmicb.2017.00171
Tahir HAS, Gu Q, Wu H et al (2017b) Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC Plant Biol 17:133. https://doi.org/10.1186/s12870-017-1083-6
doi: 10.1186/s12870-017-1083-6
pubmed: 28768498
pmcid: 5541429
Tanimoto E (2005) Regulation of root growth by plant hormones—roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265. https://doi.org/10.1080/07352680500196108
doi: 10.1080/07352680500196108
Thines B, Katsir L, Melotto M et al (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665. https://doi.org/10.1038/nature05960
doi: 10.1038/nature05960
pubmed: 17637677
Toffano L, Fialho MB, Pascholati SF (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol Control 108:77–82. https://doi.org/10.1016/j.biocontrol.2017.02.009
doi: 10.1016/j.biocontrol.2017.02.009
Tyagi S, Kim K, Cho M, Lee KJ (2019) Volatile dimethyl disulfide affects root system architecture of Arabidopsis via modulation of canonical auxin signaling pathways. Environ Sustain 2:211–216. https://doi.org/10.1007/s42398-019-00060-6
doi: 10.1007/s42398-019-00060-6
Tyagi S, Mulla SI, Lee K-J et al (2018) VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 38:1277–1296. https://doi.org/10.1080/07388551.2018.1472551
doi: 10.1080/07388551.2018.1472551
pubmed: 29862848
Olaf T, Song C, Dickschat JS et al (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol 25:280–292. https://doi.org/10.1016/j.tim.2016.12.002
doi: 10.1016/j.tim.2016.12.002
Tzec-Interián JA, Desgarennes D, Carrión G et al (2020) Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS ONE 15:e0231215. https://doi.org/10.1371/journal.pone.0231215
doi: 10.1371/journal.pone.0231215
pubmed: 32267901
pmcid: 7141680
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971. https://doi.org/10.1105/tpc.9.11.1963
doi: 10.1105/tpc.9.11.1963
pubmed: 9401121
pmcid: 157050
Vaishnav A, Kumari S, Jain S et al (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J Appl Microbiol 119:539–551. https://doi.org/10.1111/jam.12866
doi: 10.1111/jam.12866
pubmed: 26042866
Vejan P, Abdullah R, Khadiran T, et al (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Mol Basel Switz 21: https://doi.org/10.3390/molecules21050573
Velázquez-Becerra C, Macías-Rodríguez LI, López-Bucio J et al (2011) A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329–340. https://doi.org/10.1007/s11104-010-0583-z
doi: 10.1007/s11104-010-0583-z
Weller DM, Landa BB, Mavrodi OV et al (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol Stuttg Ger 9:4–20. https://doi.org/10.1055/s-2006-924473
doi: 10.1055/s-2006-924473
Wu S, Tohge T, Cuadros-Inostroza Á et al (2018) Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions. Mol Plant 11:118–134. https://doi.org/10.1016/j.molp.2017.08.012
doi: 10.1016/j.molp.2017.08.012
pubmed: 28866081
Xie S-S, Wu H-J, Zang H-Y et al (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant-Microbe Interact 27:655–663. https://doi.org/10.1094/MPMI-01-14-0010-R
doi: 10.1094/MPMI-01-14-0010-R
pubmed: 24678831
Xu Y-Y, Lu H, Wang X et al (2015) Effect of volatile organic compounds from bacteria on nematodes. Chem Biodivers 12:1415–1421. https://doi.org/10.1002/cbdv.201400342
doi: 10.1002/cbdv.201400342
pubmed: 26363885
Yu S-M, Lee YH (2013) Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485–495. https://doi.org/10.1007/s11104-013-1652-x
doi: 10.1007/s11104-013-1652-x
Zhang H, Kim M-S, Krishnamachari V et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851. https://doi.org/10.1007/s00425-007-0530-2
doi: 10.1007/s00425-007-0530-2
pubmed: 17497164
Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol Seoul Korea 48:460–466. https://doi.org/10.1007/s12275-010-0068-z
doi: 10.1007/s12275-010-0068-z