Drivers of taxonomic, functional and phylogenetic diversities in dominant ground-dwelling arthropods of coastal heathlands.
Ants
Carabids
Functional trait
Habitat filtering
Maritime clifftops
Neutral theory
Phylogenetic conservatism
Spiders
Journal
Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
27
12
2020
accepted:
31
08
2021
pubmed:
19
9
2021
medline:
14
10
2021
entrez:
18
9
2021
Statut:
ppublish
Résumé
Although functional and phylogenetic diversities are increasingly used in ecology for a variety of purposes, their relationship remains unclear, and this relationship likely differs among taxa, yet most recent studies focused on plants. We hypothesize that communities may be diverse in functional traits due to presence of: many phylogenetic lineages, trait divergence within lineages, many species and random functional variation among species, weak filtering of traits in favorable environments, or strong trait divergence in unfavorable environments. We tested these predictions for taxa showing higher (ants), or lower (spiders, ground beetles) degrees of competition and niche construction, both of which might decouple functional traits from phylogenetic position or from the environment. Studying > 11,000 individuals and 216 species from coastal heathlands, we estimated functional as minimum spanning trees using traits related to the morphology, feeding habits and dispersal, respectively. Relationships between functional and phylogenetic diversities were overall positive and strong. In ants, this relationship disappeared after accounting for taxonomic diversities and environments, whereas in beetles and spiders taxonomic diversity is related to functional diversity only via increasing phylogenetic diversity. Environmental constraints reduced functional diversity in ants, but affected functional diversity only indirectly via phylogenetic diversity (ground beetles) and taxonomic and then phylogenetic diversity (spiders and ground beetles). Results are consistent with phylogenetic conservatism in traits in spiders and ground beetles. In ants, in contrast, traits appear more phylogenetically neutral with any new species potentially representing a new trait state, tentatively suggesting that competition or niche construction might decouple phylogenetics from trait diversity.
Identifiants
pubmed: 34535833
doi: 10.1007/s00442-021-05032-4
pii: 10.1007/s00442-021-05032-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
511-522Subventions
Organisme : Fondation de France
ID : 1531
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linn Soc 141:447–626. https://doi.org/10.1111/j.1096-3642.2004.00120.x
doi: 10.1111/j.1096-3642.2004.00120.x
Arnan X, Cerdá X, Retana J (2015) Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ 3:e1241. https://doi.org/10.7717/peerj.1241
doi: 10.7717/peerj.1241
pubmed: 26468433
pmcid: 4592154
Arnedo MA, Hormiga G, Scharff N (2009) Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics 25(3):231–262. https://doi.org/10.1111/j.1096-0031.2009.00249.x
doi: 10.1111/j.1096-0031.2009.00249.x
Azevedo GHF, Griswold CE, Santos AJ (2018) Systematics and evolution of ground spiders revisited (Araneae, Dionycha, Gnaphosidae). Cladistics 34:579–626. https://doi.org/10.1111/cla.12226
doi: 10.1111/cla.12226
Baulechner D, Jauker F, Neubauer TA, Wolters V (2020) Convergent evolution of specialized generalists: implications for phylogenetic and functional diversity of carabid feeding groups. Ecol Evol 10:11100–11110
pubmed: 33144951
pmcid: 7593144
doi: 10.1002/ece3.6746
Bernard-Verdier M, Flores O, Navas ML, Garnier E (2013) Partitioning phylogenetic and functional diversity into alpha and beta components along an environmental gradient in a Mediterranean rangeland. J Veg Sci 24:877–889
doi: 10.1111/jvs.12048
Blatrix R, Galkowski C, Lebas C, Wegnez P (2013) Guide des fourmis de France, Delachaux et Niestlé, pp 287.
Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 24:1765–1771
pubmed: 25042592
doi: 10.1016/j.cub.2014.06.034
pmcid: 25042592
Bürkner P-C (2018) Advanced bayesian multilevel modeling with the R package brms. R J 10:395–411. https://doi.org/10.32614/RJ-2018-017
doi: 10.32614/RJ-2018-017
Cadotte MW, Carboni M, Si X, Tatsumi S (2019) Do traits and phylogeny support congruent community diversity patterns and assembly inferences? J Ecol 107:2065–2077
doi: 10.1111/1365-2745.13247
Campbell WB, Freeman DC, Emlen JM, Ortiz SL (2010) Correlations between plant phylogenetic and functional diversity in a high altitude cold salt desert depend on sheep grazing season: Implications for range recovery. Ecol Indic 10:676–686
doi: 10.1016/j.ecolind.2009.11.007
Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:e21710
pubmed: 21738772
pmcid: 3126856
doi: 10.1371/journal.pone.0021710
Cardoso P, Rigal F, Carvalho JC (2015) BAT–Biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol Evol 6:232–236
doi: 10.1111/2041-210X.12310
Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715
pubmed: 19473217
doi: 10.1111/j.1461-0248.2009.01314.x
Cerda X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology. Myrmecol News 18:131–147
Coelho MS, Quintino AV, Fernandes GW, Santos JC, Delabie JHC (2009) Ants (Hymenoptera: Formicidae) as bioindicators of land restoration in a Brazilian Atlantic forest fragment. Sociobiology 54:51
Corbelli JM, Zurita GA, Filloy J, Galvis JP, Vespa NI, Bellocq I (2015) Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10:e0126854
pubmed: 25978319
pmcid: 4433125
doi: 10.1371/journal.pone.0126854
Darwin C (1859) On the origin of species. John Murray, London
Desender K, Maelfait J-P (1999) Diversity and conservation of terrestrial arthropods in tidal marshes along the River Schelde: a gradient analysis. Biol Conserv 87:221-229
doi: 10.1016/S0006-3207(98)00058-5
Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506
doi: 10.1078/1439-1791-00185
Dunn EL, Shropshire FM, Song LC, Mooney HA (1976) The water factor and convergent evolution in Mediterranean-type vegetation. Water and plant life. Springer, Berlin, Heidelberg, pp 492–505
doi: 10.1007/978-3-642-66429-8_30
Ellenberg H, Weber HE, Düll R et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd ed. Scr Geobot 18:1–258
Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448
doi: 10.1111/j.1466-8238.2006.00305.x
Eterovick PC, Rievers CR, Kopp K, Wachlevski M, Franco BP, Dias CJ, Barata IM, Ferreira ADM, Afonso LG (2010) Lack of phylogenetic signal in the variation in anuran microhabitat use in southeastern Brazil. Evol Ecol. https://doi.org/10.1007/s10682-008-9286-9
doi: 10.1007/s10682-008-9286-9
Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10
doi: 10.1016/0006-3207(92)91201-3
Fichaux M, Béchade B, Donald J, Weyna A, Delabie JHC, Murienne J, Baraloto C, Orivel J (2019) Habitats shape taxonomic and functional composition of Neotropical ant assemblages. Oecologia 189:501–513
pubmed: 30701386
doi: 10.1007/s00442-019-04341-z
Finch OD, Krummen H, Plaisier F, Schultz W (2007) Zonation of spiders (Araneae) and carabid beetles (Coleoptera: Carabidae) in island salt marshes at the North Sea coast. Wetl Ecol Manag 15:207–228
doi: 10.1007/s11273-006-9024-4
Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581
pubmed: 21905424
doi: 10.1890/10-1245.1
Frick H, Nentwig W, Kropf C (2010) Progress in erigonine spider phylogeny—the Savignia-group is not monophyletic (Araneae : Linyphiidae). Org Divers Evol 10:297–310. https://doi.org/10.1007/s13127-010-0023-1
doi: 10.1007/s13127-010-0023-1
Georges A, Fouillet P, Pétillon J (2011) Changes in salt-marsh carabid assemblages after an invasion by the native grass Elymus athericus (Link) Kerguélen. ZooKeys 100:407–419
doi: 10.3897/zookeys.100.1537
Gerhold P, Cahill JF Jr, Winter M, Bartish IV, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614
doi: 10.1111/1365-2435.12425
Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850. https://doi.org/10.1007/s10841-013-9565-9
doi: 10.1007/s10841-013-9565-9
Götting E (2001) Development of salt marsh arthropod fauna after opening a summer polder. Senckenberg Marit 31:333–340
doi: 10.1007/BF03043042
Grundler MR, Pianka ER, Pelegrin N, Cowan MA, Rabosky DL (2018) Stable isotope ecology of a hyper-diverse community of scincid lizards from arid Australia. PLoS ONE 12:e0172879
doi: 10.1371/journal.pone.0172879
Haak DC, Ballenger BA, Moyle LC (2014) No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology 95:1633–1641
pubmed: 25039227
doi: 10.1890/13-1145.1
Hacala A, Le Roy M, Sawtschuk J, Pétillon J (2020) Comparative responses of spiders and plants to maritime heathland restoration. Biodivers Conserv 29:229–249
doi: 10.1007/s10531-019-01880-y
Harvey PR, Nellist DR, Telfer MG (2002) Provisional Atlas of British spiders (Arachnida, Araneae), volumes 1 & 2, Biological Records Centre, Huntingdon, pp 406
Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants. Centre for Ecology and Hydrology, Huntingdon, Cambs, UK
Hill MO, Preston CD, Roy DB (2004) PLANTATT-attributes of British and Irish plants: status, size, life history, geography and habitats. Centre for Ecology and Hydrology, Huntingdon
Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA
Jeannel R (1941) Faune de France: Coléoptères carabiques. Fédération Française des sociétés de science naturelles, Office central de faunistique, pp 1173.
Khalil MI, Gibson DJ, Baer SG, Willand JE (2018) Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere 9:e02164. https://doi.org/10.1002/ecs2.2164
doi: 10.1002/ecs2.2164
Kruschke JK, Liddell TM (2018) The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev 25:178–206
pubmed: 28176294
doi: 10.3758/s13423-016-1221-4
Lafage D, Maugenest S, Bouzillé J-B, Pétillon J (2015) Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol Res 30:1025–1035
doi: 10.1007/s11284-015-1304-0
Lafage D, Djoudi EA, Perrin G, Gallet S, Pétillon J (2019) Responses of ground-dwelling spider assemblages to changes in vegetation from wet oligotrophic habitats of Western France. Arthropod Plant Interact 13:653–662
doi: 10.1007/s11829-019-09685-0
Laliberté E, Legendre P, Shipley B, Laliberté ME (2014) Package ‘FD’. Measuring functional diversity from multiple traits, and other tools for functional ecology. [Computer software]
Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579
doi: 10.1111/2041-210X.12512
Leroy B, Le Viol I, Pétillon J (2014) Complementarity of rarity, specialisation and functional diversity metrics to assess community responses to environmental changes, using an example of spider communities in salt marshes. Ecol Indic 46:351–357
doi: 10.1016/j.ecolind.2014.06.037
Liu C, Guénard B, Blanchard B, Peng YQ, Economo EP (2016) Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecol Monogr 86:215–227. https://doi.org/10.1890/15-1464.1
doi: 10.1890/15-1464.1
López-López A, Vogler AP (2017) The mitogenome phylogeny of Adephaga (Coleoptera). Mol Phylogenet Evol 114:166–174. https://doi.org/10.1016/j.ympev.2017.06.009
doi: 10.1016/j.ympev.2017.06.009
pubmed: 28647620
pmcid: 28647620
Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256
pubmed: 15012329
doi: 10.1146/annurev.en.41.010196.001311
pmcid: 15012329
Lowe E, Wolff JO, Aceves-Aparicio A, Birkhofer K, Branco VV, Cardoso P, Chichorro P, Fukushima CS, Gonçalves-Souza T, Haddad CR, Isaia M, Krehenwinkel H, Lynn Audisio T, Macías-Hernández N, Malumbres-Olarte J, Mammola S, McLean DJ, Michalko R, Nentwig W, Pekár S, Pétillon J, Privet K, Scott C, Uhl G, Urbano-Tenorio F, Wong BH, Herberstein ME (2020) Towards establishment of a centralized spider traits database. J Arachnol 48:103–109
doi: 10.1636/0161-8202-48.2.103
Luff ML (2007) The Carabidae (ground beetles) of Britain and Ireland. RES handbooks for the identification of British Insects, vol 4 Part 2. Field Studies Council, Shrewsbury, pp 252.
Maddison WP (2015) A phylogenetic classification of jumping spiders (Araneae : Salticidae). J Arachnol 43:231. https://doi.org/10.1636/arac-43-03-231-292
doi: 10.1636/arac-43-03-231-292
Magura T (2016) Ignoring functional and phylogenetic features masks the edge influence on ground beetle diversity across forest-grassland gradient. For Ecol Manage 384:371–377. https://doi.org/10.1016/j.foreco.2016.10.056
doi: 10.1016/j.foreco.2016.10.056
Magura T, Lövei GL (2019) Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland. Insect Sci 26:154–163
pubmed: 28675647
doi: 10.1111/1744-7917.12504
Magura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob Ecol and Biogeogr 19:16–26
doi: 10.1111/j.1466-8238.2009.00499.x
Makowski D, Ben-Shachar MS, Lüdecke D (2019) bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw 4:1541
doi: 10.21105/joss.01541
Martínez-Navarro EM, Galián J, Serrano J (2005) Phylogeny and molecular evolution of the tribe Harpalini (Coleoptera, Carabidae) inferred from mitochondrial cytochrome-oxidase I. Mol Phylogen Evol 35:127–146. https://doi.org/10.1016/j.ympev.2004.11.009
doi: 10.1016/j.ympev.2004.11.009
Millidge AF (1978) The genera Mecopisthes Simon and Hypsocephalus n.gen. and their phylogenetic relationships Araneae: Linyphiidae. Bull Br Arachnol Soc 4:113–123
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants : diversification in the age of Angiosperms. Science 312:101–104. https://doi.org/10.1126/science.1124891
doi: 10.1126/science.1124891
pubmed: 16601190
Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2019) Version 06.2019. Available at https://www.araneae.nmbe.ch . Accessed 19 June 2019. https://doi.org/10.24436/1
Niemelä J (1993) Interspecific competition in ground-beetle assemblages (Carabidae): what have we learned? Oikos 66:325–335
doi: 10.2307/3544821
Niemelä J, Kotze DJ (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landsc Urban Plan 92:65–71
doi: 10.1016/j.landurbplan.2009.05.016
Novack-Gottshall PM (2016) General models of ecological diversification. I Concep Synth Paleobiol 42:185–208
doi: 10.1017/pab.2016.3
Ober KA, Maddison DR (2008) Phylogenetic relationships of tribes within Harpalinae (Coleoptera : Carabidae) as inferred from 28S ribosomal DNA and the wingless gene. J Insect Sci 8:1–32. https://doi.org/10.1673/031.008.6301
doi: 10.1673/031.008.6301
Odling-Smee FJ, Laland KN, Feldman MW (2013) Niche construction: the neglected process in evolution (MPB-37). Princeton University Press, Princeton, p 488
doi: 10.1515/9781400847266
Paradis E, Blomberg S, Bolker B, Brown J, Claude J, Cuong HS, Desper R (2019) Package ‘ape’. Analyses of phylogenetics and evolution version 2. [Computer software]
Parr CL, Dunn RR, Sanders NJ, Weiser MD, Photakis M, Bishop TR, Fitzpatrick MC, Arnan X, Baccaro F, Brand Ao CRF, Chick L, Donoso DA, Fayle TM, Gomez C, Munyai BTC, Pacheco R, Retana J, Robinson A, Sagata K, Silva RR, Tista M, Vasconcelos H, Yates M, Gibb H (2017) GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv Divers 10:5–20
doi: 10.1111/icad.12211
Pavoine S, Baguette M, Bonsall MB (2010) Decomposition of trait diversity among the nodes of a phylogenetic tree. Ecol Monogr 80:485–507
doi: 10.1890/09-1290.1
Pavoine S, Gasc A, Bonsall MB, Mason NW (2013) Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes? J Veg Sci 24:781–793
doi: 10.1111/jvs.12051
Pedley SM, Dolman PM (2014) Multi-taxa trait and functional responses to physical disturbance. J Anim Ecol 83:1542–1552. https://doi.org/10.1111/1365-2656.12249
doi: 10.1111/1365-2656.12249
pubmed: 24942040
Pétillon J, Ysnel F, Canard A, Lefeuvre J-C (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: responses of spider populations. Biol Conserv 126:103–117
doi: 10.1016/j.biocon.2005.05.003
Pétillon J, Georges A, Canard A, Ysnel F (2007) Impact of cutting and sheep grazing on ground–active spiders and carabids in intertidal salt marshes (Western France). Anim Biodivers Conserv 30:201–209
Pétillon J, Georges A, Canard A, Lefeuvre J-C, Bakker JP, Ysnel F (2008) Influence of abiotic factors on spider and ground beetles communities in different salt-marsh systems. Basic Appl Ecol 9:743–751
doi: 10.1016/j.baae.2007.08.007
Pétillon J, Potier S, Carpentier A, Garbutt A (2014) Evaluating the success of managed realignment for the restoration of salt marshes: lessons from invertebrate communities. Ecol Eng 69:70–75
doi: 10.1016/j.ecoleng.2014.03.085
Piacentini LN, Ramírez MJ (2019) Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae). Mol Phylogenet Evol 136:227–240
pubmed: 30953780
doi: 10.1016/j.ympev.2019.04.004
Pinheiro-Silva L, Gianuca AT, Silveira MH, Petrucio MM (2020) Grazing efficiency asymmetry drives zooplankton top-down control on phytoplankton in a subtropical lake dominated by non-toxic cyanobacteria. Hydrobiologia 847:2307–3220
doi: 10.1007/s10750-020-04255-5
Prinzing A (2016) On the opportunity of using phylogenetic information to ask evolutionary questions in functional community ecology. Fol Geobot 51:69–74
doi: 10.1007/s12224-016-9242-3
Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, Van Groenendael JM (2008) Less lineages–more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819
pubmed: 18445034
doi: 10.1111/j.1461-0248.2008.01189.x
Purves DW, Turnbull LA (2010) Different but equal: the implausible assumption at the heart of neutral theory. J Anim Ecol 79:1215–1225
pubmed: 20726922
pmcid: 3025117
doi: 10.1111/j.1365-2656.2010.01738.x
Ridel A, Lafage D, Devogel P, Lacoue-Labarthe T, Pétillon J (2021) Habitat filtering differentially modulates phylogenetic vs functional diversity relationships between dominant ground-dwelling arthropods in salt marshes. R Soc Open Sci 8:202093. https://doi.org/10.1098/rsos.202093
doi: 10.1098/rsos.202093
pubmed: 34109036
pmcid: 8170193
Roberts MJ (1985) The spiders of Great Britain and Ireland. J New York Entomol Soc 93:1279–1280
Rodrigues ASL, Brooks TM, Gaston KJ (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference. Phylogeny Conserv 8:101–119
Ruiz C, Jordal B, Serrano J (2009) Molecular phylogeny of the tribe Sphodrini (Coleoptera: Carabidae) based on mitochondrial and nuclear markers. Mol Phylogenet Evol 50(1):44–58. https://doi.org/10.1016/j.ympev.2008.09.023
doi: 10.1016/j.ympev.2008.09.023
pubmed: 18948213
Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc Lond B Biol Sci 366:2536–2544
pubmed: 21807734
pmcid: 3138614
doi: 10.1098/rstb.2011.0024
Sasakawa K, Kubota K (2007) Phylogeny and genital evolution of Carabid beetles in the genus Pterostichus and its allied genera (Coleoptera: Carabidae) inferred from two nuclear gene sequences. Ann Entomol Soc Am 100(2):100–109. https://doi.org/10.1603/0013-8746(2007)100[100:PAGEOC]2.0.CO;2
doi: 10.1603/0013-8746(2007)100[100:PAGEOC]2.0.CO;2
Sawtschuk J (2010) Restauration écologique des pelouses et des landes des falaises littorales atlantiques: Analyse des trajectoires successionnelles en environnement contraint. PhD dissertation, Institut de Géoarchitecture, Université de Bretagne Occidentale, Brest, France.
Scharff N, Coddington JA, Blackledge TA, Agnarsson I, Framenau VW, Szűts T, Hayashi CY, Dimitrov D (2019) Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 36:1–21. https://doi.org/10.1111/cla.12382
doi: 10.1111/cla.12382
pubmed: 34618955
pmcid: 34618955
Schirmel J, Blindow I, Buchholz S (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606–614. https://doi.org/10.1016/j.baae.2012.08.015
doi: 10.1016/j.baae.2012.08.015
Schirmel J, Thiele J, Entling MH, Buchholz S (2016) Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agric Ecosyst Environ 235:318–328. https://doi.org/10.1016/j.agee.2016.10.028
doi: 10.1016/j.agee.2016.10.028
Schmidt FA, Schoereder JH, Caetano MDN (2017) Ant assemblage and morphological traits differ in response to soil compaction. Insectes Soc 64:219–225
doi: 10.1007/s00040-016-0532-9
Stevens RD, Grimshaw JR (2020) Relative contributions of ecological drift and selection on bat community structure in interior Atlantic Forest of Paraguay. Oecologia 193:645–654
pubmed: 32583124
doi: 10.1007/s00442-020-04683-z
pmcid: 32583124
Topping CJ, Sunderland KD (1992) Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J Appl Ecol 29:485–491
doi: 10.2307/2404516
Torma A, Császár P, Bozsó M, Deák B, Valkó O, Kiss O, Gallé R (2019) Species and functional diversity of arthropod assemblages (Araneae, Carabidae, Heteroptera and Orthoptera) in grazed and mown salt grasslands. Agric Ecosyst Environ 273:70–79
doi: 10.1016/j.agee.2018.12.004
Torossian C (1977) Les fourmis rousses des bois (Formica rufa) indicateurs biologiques de dégradation des forêts de montagne des Pyrénées orientales. Bull D’écol 8:333–348
Traut BH (2005) The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California. J Ecol 93:279–290. https://doi.org/10.1111/j.1365-2745.2005.00969.x
doi: 10.1111/j.1365-2745.2005.00969.x
Tucker CM, Davies TJ, Cadotte MW, Pearse WD (2018) On the relationship between phylogenetic diversity and trait diversity. Ecology 99:1473–1479
pubmed: 29782644
doi: 10.1002/ecy.2349
Varet M, Burel F, Lafage D, Pétillon J (2013) Age-dependent colonization of urban habitats: a diachronic approach using carabid beetles and spiders. Anim Biol 63:257–269
doi: 10.1163/15707563-00002410
Verschoor BC, Krebs BPM (1995) Diversity changes in a plant and carabid community during early succession in an embanked saltmarsh area. Pedobiologia 39:405–416
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892
doi: 10.1111/j.0030-1299.2007.15559.x
Wang F, Ballesteros JA, Hormiga G, Chesters D, Zhan Y, Sun N, Zhu C, Chen W, Tu L (2015) Resolving the phylogeny of a speciose spider group, the family Linyphiidae (Araneae). Mol Phylogenet Evol 91:135–149. https://doi.org/10.1016/j.ympev.2015.05.005
doi: 10.1016/j.ympev.2015.05.005
pubmed: 25988404
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505
doi: 10.1146/annurev.ecolsys.33.010802.150448
Wenninger EJ, Fagan WF (2000) Effect of river flow manipulation on wolf spider assemblages at three desert riparian sites. J Arachnol 28:115–122
doi: 10.1636/0161-8202(2000)028[0115:EORFMO]2.0.CO;2
Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Almeida-Silva L, Alvarez-Padilla F, Arnedo MA, Benavides Silva LR, Benjamin SP, Bond JE, Grismado CJ, Hasan E, Hedin M, Izquierdo MA, Labarque FM, Ledford J, Lopardo L, Maddison WP, Miller JA, Piacentini LN, Platnik NI, Polotow D, Silva-Dávila D, Scharff N, Szűts T, Ubick D, Vink CJ, Wood HM, Zhang J (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33:574–616. https://doi.org/10.1111/cla.12182
doi: 10.1111/cla.12182
Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davis JT, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324
pubmed: 20649638
doi: 10.1111/j.1461-0248.2010.01515.x
Wise DH (2006) Cannibalism, food limitation, intraspecific competition and the regulation of spider populations. Annu Rev Entomol 51:441–465
pubmed: 16332219
doi: 10.1146/annurev.ento.51.110104.150947
Wong MK, Guénard B, Lewis OT (2019) Trait-based ecology of terrestrial arthropods. Biol Rev 94:999–1022
pubmed: 30548743
doi: 10.1111/brv.12488