Feed intake, methane yield, and efficiency of utilization of energy and nitrogen by sheep fed tropical grasses.


Journal

Tropical animal health and production
ISSN: 1573-7438
Titre abrégé: Trop Anim Health Prod
Pays: United States
ID NLM: 1277355

Informations de publication

Date de publication:
18 Sep 2021
Historique:
received: 10 07 2020
accepted: 10 09 2021
entrez: 18 9 2021
pubmed: 19 9 2021
medline: 22 9 2021
Statut: epublish

Résumé

Forage allowance impacts dry matter (DM) intake and the use of nutrients by ruminants. The efficient use of protein and energy from pasture is related to better livestock performance and lower environmental impacts. The aims of this study were to evaluate the effect of forage allowance levels on intake, digestibility, nitrogen (N) and energy balance, and methane (CH

Identifiants

pubmed: 34535849
doi: 10.1007/s11250-021-02928-4
pii: 10.1007/s11250-021-02928-4
doi:

Substances chimiques

Nitrogen N762921K75
Methane OP0UW79H66

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

452

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Allen, M.S., 2014. Drives and limits to feed intake in ruminants, Animal Production Science, 54, 1513–1524.
doi: 10.1071/AN14478
Amaral, G.A., David, D.B., Gere, J.I., Savian, J. V., Kohmann, M.M., Nadin, L.B., Chopa, F.S., Bayer, C. and Carvalho, P.C.F., 2016. Methane emissions from sheep grazing pearl millet (Penissetum americanum (L.) Leeke) swards fertilized with increasing nitrogen levels, Small Ruminant Research, 141, 118–123.
doi: 10.1016/j.smallrumres.2016.07.011
AOAC, 1975. Official Methods of Analysis, 12
Archimède, H., Eugène, M., Magdeleine, C.M., Boval, M., Martin, C., Morgavi, D.P., Lecomte, P. and Doreau, M., 2011. Comparison of methane production between C3 and C4 grasses and legumes, Animal Feed Science and Technology, 166-167, 59–64.
doi: 10.1016/j.anifeedsci.2011.04.003
Archimède, H., Rira, M., Eugène, M., Fleury, J., Lastel, M.L., Periacarpin, F., Silou-Etienne, T., Morgavi, D.P. and Doreau, M., 2018. Intake, total-tract digestibility and methane emissions of Texel and Blackbelly sheep fed C4 and C3 grasses tested simultaneously in a temperate and a tropical area, Journal of Cleaner Production, 185, 455–463.
doi: 10.1016/j.jclepro.2018.03.059
Azevedo, E.B., Poli, C.H.E.C., David, D.B., Amaral, G.A., Fonseca, L., Carvalho, P.C.F., Fischer, V. and Morris, S.T., 2014. Use of faecal components as markers to estimate intake and digestibility of grazing sheep, Livestock Science, 165, 42–50.
doi: 10.1016/j.livsci.2014.04.018
Berça, A.S., Cardoso, A. da S., Longhini, V.Z., Tedeschi, L.O., Boddey, R.M., Berndt, A., Reis, R.A. and Ruggieri, A.C., 2019. Methane production and nitrogen balance of dairy heifers grazing palisade grass cv. Marandu alone or with forage peanut, Journal of Animal Science, 97, 4625–4634.
pubmed: 31588955 pmcid: 6827405 doi: 10.1093/jas/skz310
Berndt, A., Boland, T.M., Deighton, M.H., Gere, J.I., Grainger, C., Hegarty, R.S., Iwaasa, A.D., Koolaard, J.P., Lassey, K.R., Luo, D. Martin, R.J., Martin, C., Moate, P.J., Molano, G., Pinares-Patiño, C., Ribaux, B.E., Swainson, N.M., Waghorn, G.C. and Williams. S.R.O., 2014. Guidelines for use of sulphur hexafluoride (SF
Blaxter, K.L. and Clapperton, J.L., 1965. Prediction of the amount of methane produced by ruminants, British Journal of Nutrition, 19, 511–522.
doi: 10.1079/BJN19650046
Chen, X.B. and Gomes, M.J., 1995. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives: an overview of the technical details (International Feed Resources Unit Rowett Research Institute Bucksburn Aberdeen).
Congio, G.F.S., Batalha, C.D.A., Chiavegato, M.B., Berndt, A., Oliveira, P.P.A., Frighetto, R.T.S., Maxwell, T.M.R., Gregorini, P. and Da Silva, S.C., 2018. Strategic grazing management towards sustainable intensification at tropical pasture-based dairy systems, Science of the Total Environment, 636, 872–880.
doi: 10.1016/j.scitotenv.2018.04.301
CSIRO, 2007. Nutrient Requirements of Domesticated Ruminants (CSIRO Publishing, Melbourne).
Damasceno, J.C., Santos, G.T., Cecato, U., Sakaguti, E.S., Alcade, C.R. and Branco, A.F., 2000. Voluntary intake, digestibility and nitrogen balance in sheep fed ammoniated rice straw in different allowance levels, Revista Brasileira de Zootecnia, 29, 1167–1173.
doi: 10.1590/S1516-35982000000400030
David, D.B., Poli, C.H.E.C., Savian, J.V., Amaral, G.A., Azevedo, E.B., Carvalho, P.C.F. and Mcmanus, C.M., 2014. Faecal index to estimate intake and digestibility in grazing sheep, Journal of Agricultural Science, 152, 667–674.
doi: 10.1017/S0021859613000294
Dias, R.S., Patino, H.O., López, S., Prates, E., Swanson, K.C. and France, J., 2011. Relationships between chewing behavior, digestibility, and digesta passage kinetics in steers fed oat hay at restricted and ad libitum intakes, Journal of Animal Science, 89, 1873–1880.
pubmed: 21297056 doi: 10.2527/jas.2010-3156
Dijkstra, J., Oenema, O., van Groenigen, J.W., Spek, J.W., van Vuuren, A.M. and Bannink, A., 2013. Diet effects on urine composition of cattle and N
pubmed: 23739471 doi: 10.1017/S1751731113000578
Eckard, R.J., Grainger, C. and de Klein, C.A.M., 2010. Options for the abatement of methane and nitrous oxide from ruminant production: A review, Livestock Science, 130, 47–56.
doi: 10.1016/j.livsci.2010.02.010
Fanchone, A., Archimède, H., Baumont, R. and Boval, M., 2010. Intake and digestibility of fresh grass fed to sheep indoors or at pasture, at two herbage allowances, Animal Feed Science and Technology, 157, 151–158.
doi: 10.1016/j.anifeedsci.2010.03.002
FAO, 2020. FAOSTAT database collections. Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/faostat/en/#data/QA . Accessed 2 Feb 2020.
Gere, J. and Gratton, R., 2010. Simple, low-cost flow controllers for time averaged atmospheric sampling and other applications, Latin America Applied Research, 40, 377–381.
Goopy, J.P, Korir, D., Pelster, D., Ali, A.I.M., Wassie, S.E., Schlecht, E., Dickhoefer, U., Merbold, L., Butterbach-Bahl, K., Butterbach-Bahl, K., 2020. Severe below-maintenance feed intake increases methane yield from enteric fermentation in cattle. British Journal of Nutrition, 123, 1239–1246.
doi: 10.1017/S0007114519003350
Hammond, K.J., Burke, J.L., Koolaard, J.P., Muetzel, S., Pinares-Patiño, C.S. and Waghorn, G.C., 2013. Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages, Animal Feed Science and Technology, 179, 121–132.
doi: 10.1016/j.anifeedsci.2012.11.004
Johnson, K.A. and Johnson, D.E., 1995. Methane emissions from cattle, Journal of Animal Science, 73, 2483–2492.
pubmed: 8567486 doi: 10.2527/1995.7382483x
Johnson, K., Huyler, M., Westberg, H., Lamb, B. and Zimmerman, P., 1994. Measurement of methane emissions from ruminant livestock using a SF
doi: 10.1021/es00051a025
Kozloski, G.V., Oliveira, L., Poli, C.H.E.C., Azevedo, E.B., David, D.B., Ribeiro Filho, H.M.N. and Collet, S.G., 2014. Faecal nitrogen excretion as an approach to estimate forage intake of wethers, Journal of Animal Physiology and Animal Nutrition, 98, 659–666.
pubmed: 23931613 doi: 10.1111/jpn.12118
Kurihara, M., Magner, T., Hunter, R.A. and McCrabb, G.J., 1999. Methane production and energy partition of cattle in the tropics, British Journal of Nutrition, 81, 227–234.
doi: 10.1017/S0007114599000422
Licitra, G., Hernandez, T. M. and Van Soest, P. J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds, Animal Feed Science and Technology, 57, 347–358.
doi: 10.1016/0377-8401(95)00837-3
Long, R.J., Dong, S.K., Hu, Z.Z., Shi, J.J., Dong, Q.M. and Han, X.T., 2004. Digestibility, nutrient balance and urinary purine derivative in dry yak cows fed oat hay at different levels of intake, Livestock Production Science, 88, 27–32.
doi: 10.1016/j.livprodsci.2003.11.004
Luebbe, M.K., Patterson, J.M., Jenkins, K.H., Buttrey, E.K., Davis, T.C., Clark B.E., McCollum, F.T., Cole, N.A. and McDonald, J.C., 2011. Wet distillers grains plus solubles concentration in steam-flaked corn-based diets: Effects on feedlot cattle performance, carcass characteristics, nutrient digestibility, and ruminal fermentation characteristics, Journal of Animal Science, 90, 296–306.
pubmed: 21856891 doi: 10.2527/jas.2009-2414
Lukas, M., Sudekum, K.H., Rave, G., Friedel, K. and Susenbeth, A., 2005. Relationship between fecal crude protein concentration and diet organic matter digestibility in cattle, Journal of Animal Science, 83, 1332–1344.
pubmed: 15890810 doi: 10.2527/2005.8361332x
Moate, P.J., Deighton, M.H., Williams, S.R.O., Pryce, J.E., Hayes, B.J., Jacobs, J.L., Eckard, R.J., Hannah, M.C. and Wales, W.J., 2016. Reducing the carbon footprint of Australian milk production by mitigation of enteric methane emissions, Animal Production Science, 56, 1017–1034.
doi: 10.1071/AN15222
Morais, J.A.S., Sanchez, L.M.B., Kozloski, G.V., Lima, L.D., Trevisan, L.M., Reffatti, M.V. and Cadorin Júnior, R.L., 2007. Dwarf elephant grass hay (Pennisetum purpureum Schum. cv. Mott) digestion by sheep at different levels of intake, Ciência Rural, 37, 482–487.
doi: 10.1590/S0103-84782007000200029
National Academies of Sciences, Engineering, and Medicine, 2016. Nutrient Requirements of Beef Cattle (8
National Research Council, 2000. Nutrient Requirements of Beef Cattle (7
National Research Council, 2007. Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids, National Academic Press, Washington.
Orskov, E.R., Mcdonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92, 499–503.
doi: 10.1017/S0021859600063048
Owens, F.N., Gill, D.R., Secrist, D.S. and Coleman, S.W., 1995. Review of some aspects of growth and development of feedlot cattle, Journal of Animal Science, 73, 3152–3172.
pubmed: 8617688 doi: 10.2527/1995.73103152x
Pinares-Patiño, C., Gere, J., Williams, K., Gratton, R., Juliarena, P., Molano, G., MacLean, S., Sandoval, E., Taylor, G. and Koolaard, J., 2012. Extending the collection duration of breath samples for enteric methane emission estimation using the SF
pubmed: 26486921 pmcid: 4494328 doi: 10.3390/ani2020275
Ramírez-Restrepo, C.A., Waghorn, G.C., Gillespie, H. and Clark, H., 2019. Partition of dietary energy by sheep fed fresh ryegrass (Lolium perenne) with a wide-ranging composition and quality, Animal Production Science, 60, 1008–1017.
doi: 10.1071/AN19285
Rebelo, L.R., Luna, I.C., Messana, J.D., Araujo, R.C., Simioni, T.A., Granja-Salcedo, Y.T., Vito, E.S., Lee, C., Teixeira, I.A.M.A., Rooke, J.A. and Berchielli, T.T., 2019. Effect of replacing soybean meal with urea or encapsulated nitrate with or without elemental sulfur on nitrogen digestion and methane emissions in feedlot cattle, Animal Feed Science and Technology, 257, 114–293.
doi: 10.1016/j.anifeedsci.2019.114293
Reynolds, C.K., Lapierre, H., Tyrrell, H.F., Elsasser, T.H., Staples, R.C., Gaudreau, P. and Brazeau, P., 1992. Effects of growth hormone-releasing factor and feed intake on energy metabolism in growing beef steers: Net nutrient metabolism by portal-drained viscera and liver, Journal of Animal Science, 70, 752–763.
pubmed: 1564000 doi: 10.2527/1992.703752x pmcid: 1564000
Robertson, J.B. and Van Soest, P.J., 1981. The detergent system of analysis. In: W.P.T. James and O. Theander (Eds.), The Analysis of Dietary Fiber in Food, (Marcel Dekker, New York), 123–158.
Rymer, C., 2000. The measurement of forage digestibility in vivo. In: D.I. Givens, E. Owen, R.F.E. Axford and H.M. Omed (Eds.), Forage Evaluation in Ruminant Nutrition (CAB International, Wallingford), 113–144.
doi: 10.1079/9780851993447.0113
Savian, J.V., Schons, R.M.T., Marchi, D.E., Freitas, T.S. de, da Silva Neto, G.F., Mezzalira, J.C., Berndt, A., Bayer, C. and Carvalho, P.C.F., 2018. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep, Journal of Cleaner Production, 186, 602–608.
doi: 10.1016/j.jclepro.2018.03.162
Souza-Filho, W., Nunes, P.A. de A., Barro, R.S., Kunrath, T.R., de Almeida, G.M., Genro, T.C.M., Bayer, C. and Carvalho, P.C.F., 2019. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: Trade-offs between animal performance and environmental impacts, Journal of Cleaner Production, 213, 968–975.
doi: 10.1016/j.jclepro.2018.12.245
Thornton, P.K. and Herrero, M. 2010. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics, Proceedings of the National Academy of Sciences of the United States of America, 107, 19667–19672.
pubmed: 20823225 pmcid: 2993410 doi: 10.1073/pnas.0912890107
Waldrip, H.M., Todd, R. W. and Cole, N.A., 2013. Prediction of nitrogen excretion by beef cattle: A meta-analysis, Journal of Animal Science, 91, 4290–4302.
pubmed: 23825341 doi: 10.2527/jas.2012-5818
Yamamoto, K. and Maruyama, T., 1980. Effect of level of intake on digestibility and nitrogen balance of high protein hay by goat, Journal of Japanese Grassland Science, 26, 330–336.
Zhao, Y.G., Gordon, A.W., O’Connell, N.E. and Yan, T., 2016. Nitrogen utilization efficiency and prediction of nitrogen excretion in sheep offered fresh perennial ryegrass (Lolium perenne), Journal of Animal Science, 94, 5321–5331.
pubmed: 28046142 doi: 10.2527/jas.2016-0541

Auteurs

Eduardo Bohrer de Azevedo (EB)

Federal University of Pampa, Itaqui, RS, Brazil. ebazevedo@yahoo.com.br.

Jean Víctor Savian (JV)

Instituto Nacional de Investigación Agropecuaria (INIA), Programa Pasturas Y Forrajes. Estación Experimental INIA Treinta Y Tres, Treinta y Tres, Uruguay.

Gláucia Azevedo do Amaral (GA)

Department of Agricultural Diagnosis and Research, Hulha Negra, RS, Brazil.

Diego Bitencourt de David (DB)

Department of Agricultural Diagnosis and Research, São Gabriel, RS, Brazil.

José Ignacio Gere (JI)

Unidad de Investigaciones Y Desarrollo de Las Ingenierías, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas Y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.

Marta Moura Kohmann (MM)

Range Cattle Research and Education Center, University of Florida, Ona, FL, USA.

Carolina Bremm (C)

Grazing Ecology Research Group, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.

Felipe Jochims (F)

Research Center for Family Farming (Epagri/Cepaf), Santa Catarina Research and Rural Extension Company (Epagri), Chapecó, SC, Brazil.

Angel Sánchez Zubieta (AS)

Department of Agricultural Diagnosis and Research, Hulha Negra, RS, Brazil.

Horacio Leandro Gonda (HL)

Swedish University of Agricultural Sciences, Uppsala, Sweden.

Cimélio Bayer (C)

Department of Soil Science, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil.

Paulo César de Faccio Carvalho (PC)

Department of Agricultural Diagnosis and Research, Hulha Negra, RS, Brazil.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH