Duplex formation between the template and the nascent strand in the transcription-regulating sequences is associated with the site of template switching in SARS - CoV-2.


Journal

RNA biology
ISSN: 1555-8584
Titre abrégé: RNA Biol
Pays: United States
ID NLM: 101235328

Informations de publication

Date de publication:
15 10 2021
Historique:
pubmed: 21 9 2021
medline: 22 12 2021
entrez: 20 9 2021
Statut: ppublish

Résumé

Recently published transcriptomic data of the SARS-CoV-2 coronavirus show that there is a large variation in the frequency and steady state levels of subgenomic mRNA sequences. This variation is derived from discontinuous subgenomic RNA synthesis, where the polymerase switches template from a 3' proximal genome body sequence to a 5' untranslated leader sequence. This leads to a fusion between the common 5' leader sequence and a 3' proximal body sequence in the RNA product. This process revolves around a common core sequence (CS) that is present at both the template sites that make up the fusion junction. Base-pairing between the leader CS and the nascent complementary minus strand body CS, and flanking regions (together called the transcription regulating sequence, TRS) is vital for this template switching event. However, various factors can influence the site of template switching within the same TRS duplex. Here, we model the duplexes formed between the leader and complementary body TRS regions, hypothesizing the role of the stability of the TRS duplex in determining the major sites of template switching for the most abundant mRNAs. We indicate that the stability of secondary structures and the speed of transcription play key roles in determining the probability of template switching in the production of subgenomic RNAs. We speculate on the effect of reported variant nucleotide substitutions on our models.

Identifiants

pubmed: 34541994
doi: 10.1080/15476286.2021.1975388
pmc: PMC8459930
doi:

Substances chimiques

RNA, Viral 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

148-156

Références

J Virol. 2004 Jan;78(2):980-94
pubmed: 14694129
J Virol. 2006 Nov;80(21):10600-14
pubmed: 16920822
Acta Pharm Sin B. 2020 Jul;10(7):1228-1238
pubmed: 32363136
Virus Res. 2015 Aug 3;206:120-33
pubmed: 25736566
Adv Virus Res. 2006;66:193-292
pubmed: 16877062
J Virol. 2011 Sep;85(17):9199-209
pubmed: 21715502
J Virol. 2003 Jan;77(2):1175-83
pubmed: 12502834
RNA. 2020 Aug;26(8):937-959
pubmed: 32398273
Nat Microbiol. 2020 Apr;5(4):536-544
pubmed: 32123347
J Virol. 1995 Jan;69(1):272-80
pubmed: 7983719
EMBO J. 2002 Dec 2;21(23):6571-80
pubmed: 12456663
RNA. 2007 May;13(5):763-80
pubmed: 17353353
Virology. 2018 Apr;517:38-43
pubmed: 29475599
Infect Genet Evol. 2008 Jul;8(4):397-405
pubmed: 17881296
BMC Bioinformatics. 2010 Mar 15;11:129
pubmed: 20230624
Virus Res. 2014 Dec 19;194:76-89
pubmed: 25307890
Cell. 2020 May 14;181(4):914-921.e10
pubmed: 32330414
J Virol. 2007 Jan;81(2):718-31
pubmed: 17079322
J Virol. 2011 Jun;85(11):5593-605
pubmed: 21430057
J Virol. 2005 Feb;79(4):2506-16
pubmed: 15681451
Adv Exp Med Biol. 1998;440:215-9
pubmed: 9782283
Virology. 1993 Sep;196(1):172-8
pubmed: 8395112
J Virol. 2003 Nov;77(22):12033-47
pubmed: 14581540
Cell Host Microbe. 2014 Oct 8;16(4):462-72
pubmed: 25299332
Structure. 2000 Mar 15;8(3):R47-54
pubmed: 10745015
PLoS One. 2013 May 23;8(5):e65045
pubmed: 23717688
Nucleic Acids Res. 2019 Jul 9;47(12):6538-6550
pubmed: 31131400
J Virol. 2000 Dec;74(24):11642-53
pubmed: 11090163
Nucleic Acids Res. 2020 Dec 16;48(22):12436-12452
pubmed: 33166999
Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12056-61
pubmed: 10518575
J Virol. 2002 Feb;76(3):1293-308
pubmed: 11773405
J Virol. 2011 May;85(10):4963-73
pubmed: 21389138
J Virol. 2004 Aug;78(15):8102-13
pubmed: 15254182
Virology. 2010 May 25;401(1):29-41
pubmed: 20202661
Virology. 2018 Apr;517:44-55
pubmed: 29223446
EMBO J. 2001 Dec 17;20(24):7220-8
pubmed: 11742998
NAR Genom Bioinform. 2021 May 22;3(2):lqab043
pubmed: 34046592
Nucleic Acids Res. 1998 Jul 15;26(14):3433-42
pubmed: 9649630

Auteurs

Aaron R D'Souza (AR)

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Amanda B Buckingham (AB)

Department of Medicine, University of Cambridge, Cambridge, UK.

Fanny Salasc (F)

Department of Medicine, University of Cambridge, Cambridge, UK.

Carin K Ingemarsdotter (CK)

Department of Medicine, University of Cambridge, Cambridge, UK.

Gennaro Iaconis (G)

Department of Medicine, University of Cambridge, Cambridge, UK.

Isobel Jarvis (I)

Department of Medicine, University of Cambridge, Cambridge, UK.

Harriet C T Groom (HCT)

Department of Medicine, University of Cambridge, Cambridge, UK.

Julia C Kenyon (JC)

Department of Medicine, University of Cambridge, Cambridge, UK.
Homerton College, Cambridge, UK.
Department of Microbiology and Immunology, National University of Singapore, Singapore.

Andrew M L Lever (AML)

Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Department of Medicine, University of Cambridge, Cambridge, UK.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Humans Multiple Myeloma Male Aged Glomerulosclerosis, Focal Segmental

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH