Nitrate increases cisplatin chemosensitivity of oral squamous cell carcinoma via REDD1/AKT signaling pathway.
Animals
Antineoplastic Agents
/ pharmacology
Apoptosis
/ drug effects
Carcinoma, Squamous Cell
/ drug therapy
Cell Cycle
/ drug effects
Cell Line, Tumor
Cell Proliferation
/ drug effects
Cisplatin
/ pharmacology
Drug Synergism
Female
Humans
Mice
Mouth Neoplasms
/ drug therapy
Nitrates
/ pharmacology
Proto-Oncogene Proteins c-akt
/ metabolism
Signal Transduction
Transcription Factors
/ metabolism
AKT
OSCC
REDD1
chemosensitivity
chemotherapy
nitrate
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
15
04
2021
accepted:
07
07
2021
pubmed:
21
9
2021
medline:
12
1
2022
entrez:
20
9
2021
Statut:
ppublish
Résumé
Although cisplatin is one of the chemotherapeutics most frequently used in oral squamous cell carcinoma (OSCC) treatment, it exerts multiple side effects and poor chemosensitivity. Nitrate reportedly demonstrates several beneficial biological functions, and synthesized nitrates enhance the therapeutic efficacy of chemotherapy. However, the role of inorganic nitrate in cisplatin chemotherapy remains unclear. We therefore investigated the effect of inorganic nitrate exerted on cisplatin sensitivity in OSCC. We found that nitrate did not affect OSCC cell growth and apoptosis in OSCC cells and OSCC xenograft tumor animal studies. Cisplatin induced REDD1 expression and AKT activation in OSCC. However, nitrate could increase cisplatin chemosensitivity, reduce its REDD1 expression, and attenuate AKT signaling activation in OSCC cells. Dysregulation of high levels of REDD1, which could enhance AKT activation, was positively associated with poor prognosis in OSCC patients. Thus, reduced REDD1 expression and retarded AKT activation induced by inorganic nitrate might be a new potential approach to the sensitization of oral cancer to cisplatin treatment in the future.
Identifiants
pubmed: 34542810
doi: 10.1007/s11427-020-1978-4
pii: 10.1007/s11427-020-1978-4
doi:
Substances chimiques
Antineoplastic Agents
0
DDIT4 protein, human
0
Nitrates
0
Transcription Factors
0
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1814-1828Informations de copyright
© 2021. Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Angelidou, I., Chrysanthopoulou, A., Mitsios, A., Arelaki, S., Arampatzioglou, A., Kambas, K., Ritis, D., Tsironidou, V., Moschos, I., Dalla, V., et al. (2018). REDD1/autophagy pathway is associated with neutrophil-driven IL-1β inflammatory response in active ulcerative colitis. J Immunol 200, 3950–3961.
pubmed: 29712770
doi: 10.4049/jimmunol.1701643
pmcid: 29712770
Azizzadeh, B., Yip, H.T., Blackwell, K.E., Horvath, S., Calcaterra, T.C., Buga, G.M., Ignarro, L.J., and Wang, M.B. (2001). Nitric oxide improves cisplatin cytotoxicity in head and neck squamous cell carcinoma. Laryngoscope 111, 1896–1900.
pubmed: 11801965
doi: 10.1097/00005537-200111000-00004
pmcid: 11801965
Barra, F., Evangelisti, G., Ferro Desideri, L., Di Domenico, S., Ferraioli, D., Vellone, V.G., De Cian, F., and Ferrero, S. (2019). Investigational PI3K/AKT/mTOR inhibitors in development for endometrial cancer. Expert Opin Investig Drugs 28, 131–142.
pubmed: 30574817
doi: 10.1080/13543784.2018.1558202
pmcid: 30574817
Brix, B., Mesters, J.R., Pellerin, L., and Jöhren, O. (2012). Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1α-mediated target gene activation. J Neurosci 32, 9727–9735.
pubmed: 22787058
pmcid: 6622272
doi: 10.1523/JNEUROSCI.0879-12.2012
Brugarolas, J., Lei, K., Hurley, R.L., Manning, B.D., Reiling, J.H., Hafen, E., Witters, L.A., Ellisen, L.W., and Kaelin, W.G. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18, 2893–2904.
pubmed: 15545625
pmcid: 534650
doi: 10.1101/gad.1256804
Bryan, N.S., Alexander, D.D., Coughlin, J.R., Milkowski, A.L., and Boffetta, P. (2012). Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem Toxicol 50, 3646–3665.
pubmed: 22889895
doi: 10.1016/j.fct.2012.07.062
pmcid: 22889895
Bussink, J., van der Kogel, A.J., and Kaanders, J.H. (2008). Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol 9, 288–296.
pubmed: 18308254
doi: 10.1016/S1470-2045(08)70073-1
pmcid: 18308254
Calmels, S., Hainaut, P., and Ohshima, H. (1997). Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res 57, 3365–3369.
pubmed: 9269997
pmcid: 9269997
Cam, M., Bid, H.K., Xiao, L., Zambetti, G.P., Houghton, P.J., and Cam, H. (2014). p53/TAp63 and AKT regulate mammalian target of rapamycin complex 1 (mTORC1) signaling through two independent parallel pathways in the presence of DNA damage. J Biol Chem 289, 4083–4094.
pubmed: 24366874
doi: 10.1074/jbc.M113.530303
pmcid: 24366874
Chang, B., Liu, G., Yang, G., Mercado-Uribe, I., Huang, M., and Liu, J. (2009). REDD1 is required for RAS-mediated transformation of human ovarian epithelial cells. Cell Cycle 8, 780–786.
pubmed: 19221489
doi: 10.4161/cc.8.5.7887
pmcid: 19221489
Chang, B., Meng, J., Zhu, H., Du, X., Sun, L., Wang, L., Li, S., and Yang, G. (2018). Overexpression of the recently identified oncogene REDD1 correlates with tumor progression and is an independent unfavorable prognostic factor for ovarian carcinoma. Diagn Pathol 13, 87.
pubmed: 30428884
pmcid: 6236897
doi: 10.1186/s13000-018-0754-4
Chang, C.H., Lee, C.Y., Lu, C.C., Tsai, F.J., Hsu, Y.M., Tsao, J.W., Juan, Y. N., Chiu, H.Y., Yang, J.S., and Wang, C.C. (2017). Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: A key role of AMPK and Akt/mTOR signaling. Int J Oncol 50, 873–882.
pubmed: 28197628
doi: 10.3892/ijo.2017.3866
pmcid: 28197628
Chang, S., Hu, L., Xu, Y., Li, X., Ma, L., Feng, X., Wang, J., Zhang, C., and Wang, S. (2019). Inorganic nitrate alleviates total body irradiation-induced systemic damage by decreasing reactive oxygen species levels. Int J Radiat Oncol Biol Phys 103, 945–957.
pubmed: 30458235
doi: 10.1016/j.ijrobp.2018.11.021
pmcid: 30458235
Chi, A.C., Day, T.A., and Neville, B.W. (2015). Oral cavity and oropharyngeal squamous cell carcinoma—an update. CA Cancer J Clin 65, 401–421.
pubmed: 26215712
doi: 10.3322/caac.21293
pmcid: 26215712
Clavo, B., Robaina, F., Fiuza, D., Ruiz, A., Lloret, M., Rey-Baltar, D., Llontop, P., Riveros, A., Rivero, J., Castañeda, F., et al. (2017). Predictive value of hypoxia in advanced head and neck cancer after treatment with hyperfractionated radio-chemotherapy and hypoxia modification. Clin Transl Oncol 19, 419–424.
pubmed: 27527617
doi: 10.1007/s12094-016-1541-x
pmcid: 27527617
Corradetti, M.N., Inoki, K., and Guan, K.L. (2005). The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem 280, 9769–9772.
pubmed: 15632201
doi: 10.1074/jbc.C400557200
pmcid: 15632201
Dennis, M.D., McGhee, N.K., Jefferson, L.S., and Kimball, S.R. (2013). Regulated in DNA damage and development 1 (REDD1) promotes cell survival during serum deprivation by sustaining repression of signaling through the mechanistic target of rapamycin in complex 1 (mTORC1). Cell Signal 25, 2709–2716.
pubmed: 24018049
doi: 10.1016/j.cellsig.2013.08.038
pmcid: 24018049
Ellisen, L.W., Ramsayer, K.D., Johannessen, C.M., Yang, A., Beppu, H., Minda, K., Oliner, J.D., McKeon, F., and Haber, D.A. (2002). REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10, 995–1005.
pubmed: 12453409
doi: 10.1016/S1097-2765(02)00706-2
pmcid: 12453409
Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., Bettio, M., Gavin, A., Visser, O., and Bray, F. (2018). Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103, 356–387.
pubmed: 30100160
doi: 10.1016/j.ejca.2018.07.005
pmcid: 30100160
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., and Bray, F. (2015). Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136, E359–E386.
doi: 10.1002/ijc.29210
Franke, T.F., Hornik, C.P., Segev, L., Shostak, G.A., and Sugimoto, C. (2003). PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983–8998.
pubmed: 14663477
doi: 10.1038/sj.onc.1207115
pmcid: 14663477
Frederiksen, L.J., Sullivan, R., Maxwell, L.R., Macdonald-Goodfellow, S. K., Adams, M.A., Bennett, B.M., Siemens, D.R., and Graham, C.H. (2007). Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin Cancer Res 13, 2199–2206.
pubmed: 17404104
doi: 10.1158/1078-0432.CCR-06-1807
pmcid: 17404104
Ghani, W.M.N., Ramanathan, A., Prime, S.S., Yang, Y.H., Razak, I.A., Abdul Rahman, Z.A., Abraham, M.T., Mustafa, W.M.W., Tay, K.K., Kallarakkal, T.G., et al. (2019). Survival of oral cancer patients in different ethnicities. Cancer Invest 37, 275–287.
pubmed: 31307249
doi: 10.1080/07357907.2019.1635614
pmcid: 31307249
Gong, J., Zhou, S., and Yang, S. (2019). Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int J Mol Sci 20, 465.
pmcid: 6387037
doi: 10.3390/ijms20030465
Gong, W.J., Peng, J.B., Yin, J.Y., Li, X.P., Zheng, W., Xiao, L., Tan, L.M., Xiao, D., Chen, Y.X., Li, X., et al. (2017). Association between well-characterized lung cancer lncRNA polymorphisms and platinum-based chemotherapy toxicity in Chinese patients with lung cancer. Acta Pharmacol Sin 38, 581–590.
pubmed: 28260796
pmcid: 5386317
doi: 10.1038/aps.2016.164
Guo, G.F., Wang, Y.X., Zhang, Y.J., Chen, X.X., Lu, J.B., Wang, H.H., Jiang, C., Qiu, H.Q., and Xia, L.P. (2019). Predictive and prognostic implications of 4E-BP1, Beclin-1, and LC3 for cetuximab treatment combined with chemotherapy in advanced colorectal cancer with wild-type KRAS: Analysis from real-world data. World J Gastroenterol 25, 1840–1853.
pubmed: 31057298
pmcid: 6478617
doi: 10.3748/wjg.v25.i15.1840
Hall, M.D., Okabe, M., Shen, D.W., Liang, X.J., and Gottesman, M.M. (2008). The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu Rev Pharmacol Toxicol 48, 495–535.
pubmed: 17937596
doi: 10.1146/annurev.pharmtox.48.080907.180426
pmcid: 17937596
Hayakawa, K., Esposito, E., Wang, X., Terasaki, Y., Liu, Y., Xing, C., Ji, X., and Lo, E.H. (2016). Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555.
pubmed: 27466127
pmcid: 27466127
doi: 10.1038/nature18928
Hernández-Ramírez, R.U., Galván-Portillo, M.V., Ward, M.H., Agudo, A., González, C.A., Oñate-Ocaña, L.F., Herrera-Goepfert, R., Palma-Coca, O., and López-Carrillo, L. (2009). Dietary intake of polyphenols, nitrate and nitrite and gastric cancer risk in Mexico City. Int J Cancer 125, 1424–1430.
pubmed: 19449378
pmcid: 2787087
doi: 10.1002/ijc.24454
Hu, L., Jin, L., Xia, D., Zhang, Q., Ma, L., Zheng, H., Xu, T., Chang, S., Li, X., Xun, Z., et al. (2020). Nitrate ameliorates dextran sodium sulfate-induced colitis by regulating the homeostasis of the intestinal microbiota. Free Radic Biol Med 152, 609–621.
pubmed: 31811920
doi: 10.1016/j.freeradbiomed.2019.12.002
pmcid: 31811920
Hu, M., Huang, P., Ma, Y., Ling, S., Li, Y., Chen, B., and Xu, Y. (2017). Effect of Redd1 loss on proliferation and metastasis of pancreatic cancer cells with KrasG12D-LOH by inhibiting glycolysis. J Clin Oncol 35, e15741.
doi: 10.1200/JCO.2017.35.15_suppl.e15741
Huang, Z., Zhang, Y., Li, H., Zhou, Y., Zhang, Q., Chen, R., Jin, T., Hu, K., Li, S., Wang, Y., et al. (2019). Vitamin D promotes the cisplatin sensitivity of oral squamous cell carcinoma by inhibiting LCN2-modulated NF-κB pathway activation through RPS3. Cell Death Dis 10, 936.
pubmed: 31819048
pmcid: 6901542
doi: 10.1038/s41419-019-2177-x
Huerta, S., Chilka, S., and Bonavida, B. (2008). Nitric oxide donors: novel cancer therapeutics (review). Int J Oncol 33, 909–927.
pubmed: 18949354
pmcid: 18949354
Humans, I.W.G.o.t.E.o.C.R.t. (2010). IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monogr Eval Carcinog Risks Hum 94, v–vii, 1–412.
Igwe, E.I., Essler, S., Al-Furoukh, N., Dehne, N., and Brüne, B. (2009). Hypoxic transcription gene profiles under the modulation ofnitric oxide in nuclear run on-microarray and proteomics. BMC Genomics 10, 408.
pubmed: 19725949
pmcid: 2743718
doi: 10.1186/1471-2164-10-408
Jakszyn, P., and Gonzalez, C.A. (2006). Nitrosamine and related food intake and gastric and oesophageal cancer risk: a systematic review of the epidemiological evidence. World J Gastroenterol 12, 4296–4303.
pubmed: 16865769
pmcid: 4087738
doi: 10.3748/wjg.v12.i27.4296
Javadinia, S.A., Shahidsales, S., Fanipakdel, A., Mostafapour, A., Joudi-Mashhad, M., Ferns, G.A., and Avan, A. (2019). The esophageal cancer and the PI3K/AKT/mTOR signaling regulatory microRNAs: a novel marker for prognosis, and a possible target for immunotherapy. Curr Pharm Des 24, 4646–4651.
doi: 10.2174/1381612825666190110143258
Jia, W., Chang, B., Sun, L., Zhu, H., Pang, L., Tao, L., Zou, H., Du, J., Dong, Y., Qi, Y., et al. (2014). REDD1 and p-AKT over-expression may predict poor prognosis in ovarian cancer. Int J Clin Exp Pathol 7, 5940–5949.
pubmed: 25337238
pmcid: 4203209
Jin, H.O., Hong, S.E., Kim, J.H., Choi, H.N., Kim, K., An, S., Choe, T.B., Hwang, C.S., Lee, J.H., Kim, J.I., et al. (2013). Sustained overexpression of Redd1 leads to Akt activation involved in cell survival. Cancer Lett 336, 319–324.
pubmed: 23528835
doi: 10.1016/j.canlet.2013.03.021
pmcid: 23528835
Kalaycioglu, Z., and Erim, F.B. (2019). Nitrate and nitrites in foods: worldwide regional distribution in view of their risks and benefits. J Agric Food Chem 67, 7205–7222.
pubmed: 31244197
doi: 10.1021/acs.jafc.9b01194
pmcid: 31244197
Khan, K.H., Yap, T.A., Yan, L., and Cunningham, D. (2013). Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer 32, 253–265.
pubmed: 23642907
pmcid: 3845556
doi: 10.5732/cjc.013.10057
Knuefermann, C., Lu, Y., Liu, B., Jin, W., Liang, K., Wu, L., Schmidt, M., Mills, G.B., Mendelsohn, J., and Fan, Z. (2003). HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22, 3205–3212.
pubmed: 12761490
doi: 10.1038/sj.onc.1206394
pmcid: 12761490
Kondapaka, S.B., Singh, S.S., Dasmahapatra, G.P., Sausville, E.A., and Roy, K.K. (2003). Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2, 1093–1103.
pubmed: 14617782
pmcid: 14617782
Krock, B.L., Skuli, N., and Simon, M.C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117–1133.
pubmed: 22866203
pmcid: 3411127
doi: 10.1177/1947601911423654
Lee, J.Y., Hirota, S.A., Glover, L.E., Armstrong, G.D., Beck, P.L., and MacDonald, J.A. (2013a). Effects of nitric oxide and reactive oxygen species on HIF-1α stabilization following Clostridium Difficile toxin exposure of the Caco-2 epithelial cell line. Cell Physiol Biochem 32, 417–430.
pubmed: 23988581
doi: 10.1159/000354448
pmcid: 23988581
Lee, M., Bikram, M., Oh, S., Bull, D.A., and Kim, S.W. (2004). Sp1-dependent regulation of the RTP801 promoter and its application to hypoxia-inducible VEGF plasmid for ischemic disease. Pharm Res 21, 736–741.
pubmed: 15180327
doi: 10.1023/B:PHAM.0000026421.09367.b3
pmcid: 15180327
Lee, S.Y., Kang, H.G., Yoo, S.S., Kang, Y.R., Choi, Y.Y., Lee, W.K., Choi, J.E., Jeon, H.S., Shin, K.M., Oh, I.J., et al. (2013b). Polymorphisms in DNA repair and apoptosis-related genes and clinical outcomes of patients with non-small cell lung cancer treated with first-line paclitaxel-cisplatin chemotherapy. Lung Cancer 82, 330–339.
pubmed: 23973201
doi: 10.1016/j.lungcan.2013.07.024
pmcid: 23973201
Li, X.H., Ha, C.T., Fu, D., and Xiao, M. (2012). REDD1 protects osteoblast cells from gamma radiation-induced premature senescence. PLoS ONE 7, e36604.
pubmed: 22629318
pmcid: 3356368
doi: 10.1371/journal.pone.0036604
Liu, P., Cheng, H., Roberts, T.M., and Zhao, J.J. (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8, 627–644.
pubmed: 19644473
pmcid: 3142564
doi: 10.1038/nrd2926
Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the [Formula: see text] method. Methods 25, 402–408.
doi: 10.1006/meth.2001.1262
Lundberg, J.O., Gladwin, M.T., Ahluwalia, A., Benjamin, N., Bryan, N.S., Butler, A., Cabrales, P., Fago, A., Feelisch, M., Ford, P.C., et al. (2009). Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5, 865–869.
pubmed: 19915529
pmcid: 4038383
doi: 10.1038/nchembio.260
Lundberg, J.O., and Govoni, M. (2004). Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med 37, 395–400.
pubmed: 15223073
doi: 10.1016/j.freeradbiomed.2004.04.027
pmcid: 15223073
Ma, L., Hu, L., Feng, X., and Wang, S. (2018). Nitrate and nitrite in health and disease. Aging Dis 9, 938–945.
pubmed: 30271668
pmcid: 6147587
doi: 10.14336/AD.2017.1207
Masthan, K.M.K., Babu, N.A., Dash, K.C., and Elumalai, M. (2012). Advanced diagnostic aids in oral cancer. Asian Pac J Cancer Prevention 13, 3573–3576.
doi: 10.7314/APJCP.2012.13.8.3573
McGhee, N.K., Jefferson, L.S., and Kimball, S.R. (2009). Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1. J Nutr 139, 828–834.
pubmed: 19297425
pmcid: 2714387
doi: 10.3945/jn.108.099846
Mirza, A.M., Gysin, S., Malek, N., Nakayama, K., Roberts, J.M., and McMahon, M. (2004). Cooperative regulation of the cell division cycle by the protein kinases RAF and AKT. Mol Cell Biol 24, 10868–10881.
pubmed: 15572689
pmcid: 533961
doi: 10.1128/MCB.24.24.10868-10881.2004
Ning, S., Bednarski, M., Oronsky, B., Scicinski, J., and Knox, S.J. (2014). Novel nitric oxide generating compound glycidyl nitrate enhances the therapeutic efficacy of chemotherapy and radiotherapy. Biochem Biophys Res Commun 447, 537–542.
pubmed: 24735538
doi: 10.1016/j.bbrc.2014.04.032
pmcid: 24735538
Perrotta, C., Bizzozero, L., Falcone, S., Rovere-Querini, P., Prinetti, A., Schuchman, E.H., Sonnino, S., Manfredi, A.A., and Clementi, E. (2007). Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 67, 7559–7564.
pubmed: 17699758
doi: 10.1158/0008-5472.CAN-07-0309
pmcid: 17699758
Qiao, S., Dennis, M., Song, X., Vadysirisack, D.D., Salunke, D., Nash, Z., Yang, Z., Liesa, M., Yoshioka, J., Matsuzawa, S.I., et al. (2015). A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nat Commun 6, 7014.
pubmed: 25916556
doi: 10.1038/ncomms8014
pmcid: 25916556
Riaño, A., Ortiz-Masià, D., Velázquez, M., Calatayud, S., Esplugues, J.V., and Barrachina, M.D. (2011). Nitric oxide induces HIF-1α stabilization and expression of intestinal trefoil factor in the damaged rat jejunum and modulates ulcer healing. J Gastroenterol 46, 565–576.
pubmed: 21305324
doi: 10.1007/s00535-011-0374-1
pmcid: 21305324
Rishi, L., Dhiman, R., Raje, M., and Majumdar, S. (2007). Nitric oxide induces apoptosis in cutaneous T cell lymphoma (HuT-78) by downregulating constitutive NF-kB. Biochim Biophys Acta 1770, 1230–1239.
pubmed: 17555878
doi: 10.1016/j.bbagen.2007.04.011
pmcid: 17555878
Scagliotti, G.V., Parikh, P., von Pawel, J., Biesma, B., Vansteenkiste, J., Manegold, C., Serwatowski, P., Gatzemeier, U., Digumarti, R., Zukin, M., et al. (2008). Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26, 3543–3551.
pubmed: 18506025
doi: 10.1200/JCO.2007.15.0375
pmcid: 18506025
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675.
pubmed: 5554542
pmcid: 5554542
doi: 10.1038/nmeth.2089
Shoshani, T., Faerman, A., Mett, I., Zelin, E., Tenne, T., Gorodin, S., Moshel, Y., Elbaz, S., Budanov, A., Chajut, A., et al. (2002). Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22, 2283–2293.
pubmed: 11884613
pmcid: 133671
doi: 10.1128/MCB.22.7.2283-2293.2002
Siegel, R.L., Miller, K.D., and Jemal, A. (2018). Cancer statistics, 2018. CA Cancer J Clin 68, 7–30.
pubmed: 29313949
pmcid: 29313949
doi: 10.3322/caac.21442
Sofer, A., Lei, K., Johannessen, C.M., and Ellisen, L.W. (2005). Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 25, 5834–5845.
pubmed: 15988001
pmcid: 1168803
doi: 10.1128/MCB.25.14.5834-5845.2005
Song, P., Wu, L., and Guan, W. (2015). Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: a meta-analysis. Nutrients 7, 9872–9895.
pubmed: 26633477
pmcid: 4690057
doi: 10.3390/nu7125505
Stanimirovic, J., Obradovic, M., Jovanovic, A., Sudar-Milovanovic, E., Zafirovic, S., Pitt, S.J., Stewart, A.J., and Isenovic, E.R. (2016). A high fat diet induces sex-specific differences in hepatic lipid metabolism and nitrite/nitrate in rats. Nitric Oxide 54, 51–59.
pubmed: 26924725
doi: 10.1016/j.niox.2016.02.007
pmcid: 26924725
Tanzawa, H., Uzawa, K., Kasamatsu, A., Endo-Sakamoto, Y., Saito, K., Ogawara, K., and Shiiba, M. (2015). Targeting gene therapies enhance sensitivity to chemo- and radiotherapy of human oral squamous cell carcinoma. Oral Sci Int 12, 43–52.
doi: 10.1016/S1348-8643(15)00020-8
Thavarool, S.B., Muttath, G., Nayanar, S., Duraisamy, K., Bhat, P., Shringarpure, K., Nayak, P., Tripathy, J.P., Thaddeus, A., Philip, S., et al. (2019). Improved survival among oral cancer patients: findings from a retrospective study at a tertiary care cancer centre in rural Kerala, India. World J Surg Onc 17, 15.
doi: 10.1186/s12957-018-1550-z
Turpaev, K., Glatigny, A., Bignon, J., Delacroix, H., and Drapier, J.C. (2010). Variation in gene expression profiles ofhuman monocytic U937 cells exposed to various fluxes of nitric oxide. Free Radic Biol Med 48, 298–305.
pubmed: 19892011
doi: 10.1016/j.freeradbiomed.2009.10.054
pmcid: 19892011
van Dijk, B.A.C., Brands, M.T., Geurts, S.M.E., Merkx, M.A.W., and Roodenburg, J.L.N. (2016). Trends in oral cavity cancer incidence, mortality, survival and treatment in the Netherlands. Int J Cancer 139, 574–583.
pubmed: 27038013
doi: 10.1002/ijc.30107
pmcid: 27038013
Vermorken, J.B., Mesia, R., Rivera, F., Remenar, E., Kawecki, A., Rottey, S., Erfan, J., Zabolotnyy, D., Kienzer, H.R., Cupissol, D., et al. (2008). Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359, 1116–1127.
pubmed: 18784101
doi: 10.1056/NEJMoa0802656
pmcid: 18784101
Wang, H., Kubica, N., Ellisen, L.W., Jefferson, L.S., and Kimball, S.R. (2006). Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem 281, 39128–39134.
pubmed: 17074751
doi: 10.1074/jbc.M610023200
pmcid: 17074751
Wang, H., Hu, L., Li, L., Wu, X., Fan, Z., Zhang, C., Wang, J., Jia, J., and Wang, S. (2018). Inorganic nitrate alleviates the senescence-related decline in liver function. Sci China Life Sci 61, 24–34.
pubmed: 29307111
doi: 10.1007/s11427-017-9207-x
pmcid: 29307111
Wang, N., Feng, Y., Wang, Q., Liu, S., Xiang, L., Sun, M., Zhang, X., Liu, G., Qu, X., and Wei, F. (2014a). Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS ONE 9, e89991.
pubmed: 24587171
pmcid: 3937421
doi: 10.1371/journal.pone.0089991
Wang, N., Wang, Q.J., Feng, Y.Y., Shang, W., and Cai, M. (2014b). Overexpression of chemerin was associated with tumor angiogenesis and poor clinical outcome in squamous cell carcinoma of the oral tongue. Clin Oral Invest 18, 997–1004.
doi: 10.1007/s00784-013-1046-8
Wang, N., Wang, Q., Chi, J., Xiang, F., Lin, M., Wang, W., Wei, F., and Feng, Y. (2019). Carcinoembryonic antigen cell adhesion molecule 1 inhibits the antitumor effect of neutrophils in tongue squamous cell carcinoma. Cancer Sci 110, 519–529.
pubmed: 30565803
pmcid: 6361565
doi: 10.1111/cas.13909
Whitney, M.L., Jefferson, L.S., and Kimball, S.R. (2009). ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem Biophys Res Commun 379, 451–455.
pubmed: 19114033
doi: 10.1016/j.bbrc.2008.12.079
pmcid: 19114033
Wu, H., Huang, S., and Zhang, D. (2015). Autophagic responses to hypoxia and anticancer therapy in head and neck cancer. Pathol Res Pract 211, 101–108.
pubmed: 25523227
doi: 10.1016/j.prp.2014.11.010
pmcid: 25523227
Wu, Y.Y., Wu, H.C., Wu, J.E., Huang, K.Y., Yang, S.C., Chen, S.X., Tsao, C.J., Hsu, K.F., Chen, Y.L., and Hong, T.M. (2019). The dual PI3K/mTOR inhibitor BEZ235 restricts the growth of lung cancer tumors regardless of EGFR status, as a potent accompanist in combined therapeutic regimens. J Exp Clin Cancer Res 38, 282.
pubmed: 31262325
pmcid: 6604380
doi: 10.1186/s13046-019-1282-0
Xia, D., Qu, X., Tran, S.D., Schmidt, L.L., Qin, L., Zhang, C., Cui, X., Deng, D., and Wang, S. (2015). Histological characteristics following a long-term nitrate-rich diet in miniature pigs with parotid atrophy. Int J Clin Exp Pathol 8, 6225–6234.
pubmed: 26261499
pmcid: 4525833
Xu, Y., Pang, B., Hu, L., Feng, X., Hu, L., Wang, J., Zhang, C., and Wang, S. (2018). Dietary nitrate protects submandibular gland from hyposalivation in ovariectomized rats via suppressing cell apoptosis. Biochem Biophys Res Commun 497, 272–278.
pubmed: 29432741
doi: 10.1016/j.bbrc.2018.02.068
pmcid: 29432741
Zeng, Q., Liu, J., Cao, P., Li, J., Liu, X., Fan, X., Liu, L., Cheng, Y., Xiong, W., Li, J., et al. (2018). Inhibition of REDD1 sensitizes bladder urothelial carcinoma to paclitaxel by inhibiting autophagy. Clin Cancer Res 24, 445–459.
pubmed: 29084921
doi: 10.1158/1078-0432.CCR-17-0419
pmcid: 29084921
Zhong, L., Zhang, C., Ren, G., Guo, W., William Jr, W.N., Sun, J., Zhu, H., Tu, W., Li, J., Cai, Y., et al. (2013). Randomized phase III trial of induction chemotherapy with docetaxel, cisplatin, and fluorouracil followed by surgery versus up-front surgery in locally advanced resectable oral squamous cell carcinoma. J Clin Oncol 31, 744–751.
pubmed: 23129742
doi: 10.1200/JCO.2012.43.8820
pmcid: 23129742