Physiological responses of Agriophyllum squarrosum and Setaria viridis to drought and re-watering.
Adaptation, Physiological
/ physiology
Amaranthaceae
/ growth & development
Antioxidants
/ metabolism
Chlorophyll
Conservation of Natural Resources
/ methods
Droughts
Environmental Restoration and Remediation
/ methods
Mongolia
Peroxiredoxins
/ metabolism
Photosynthesis
/ physiology
Plant Leaves
/ metabolism
Setaria Plant
/ growth & development
Soil
/ chemistry
Stress, Physiological
/ physiology
Water
/ analysis
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
20 09 2021
20 09 2021
Historique:
received:
29
01
2021
accepted:
30
08
2021
entrez:
21
9
2021
pubmed:
22
9
2021
medline:
5
1
2022
Statut:
epublish
Résumé
Drought resistance of psammophyte determines survival and growth, but their responses to drought are not well understood. We conducted a pot experiment to study how physiological characteristics respond to drought and rehydration. We found that watering to 60-65% of field capacity (the control) provided more water than was required by Agriophyllum squarrosum and its leaves became yellow and slightly wilted. The total chlorophyll content and Fm (maximum fluorescence after dark adaptation) in control were lower than in the drought treatment, and both decreased after rehydration. With increasing drought duration and intensity, the relative water content (RWC), chlorophyll content, Fm, and the quantum efficiency of photosystem II (Fv/Fm) of Setaria viridis decreased, but malondialdehyde and membrane permeability increased. During the late drought, the activities of three antioxidant enzymes in A. squarrosum increased to prevent membrane lipid peroxidation; for S. viridis, only peroxidase and superoxide dismutase activities increased. After rehydration, RWC of both species increased, but Fv/Fm of A. squarrosum and Fm of S. viridis did not recover under severe drought. Our research illustrated that A. squarrosum is better adapted to arid environment than S. viridis, but the high soil moisture content is not conducive to normal growth of A. squarrosum.
Identifiants
pubmed: 34545147
doi: 10.1038/s41598-021-98246-8
pii: 10.1038/s41598-021-98246-8
pmc: PMC8452609
doi:
Substances chimiques
Antioxidants
0
Soil
0
Water
059QF0KO0R
Chlorophyll
1406-65-1
Peroxiredoxins
EC 1.11.1.15
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18663Informations de copyright
© 2021. The Author(s).
Références
Chen, J. L. et al. Effects of drought and rehydration on the physiological responses of Artemisia halodendron. Water 11, 793 (2019).
doi: 10.3390/w11040793
Huxman, T. E. et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141, 254–268 (2004).
pubmed: 15338414
doi: 10.1007/s00442-004-1682-4
Luo, Y. Y. et al. Physiological acclimation of two psammophytes to repeated soil drought and rewatering. Acta Physiol. Plant. 33, 79–91 (2011).
doi: 10.1007/s11738-010-0519-5
Miyashita, K. & Kimura, K. Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ. Exp. Bot. 53, 205–214 (2005).
doi: 10.1016/j.envexpbot.2004.03.015
An, Y. Y. et al. Organ-dependent responses of Periploca sepium to repeated dehydration and rehydration. S. Afr. J. Bot. 77, 446–454 (2011).
doi: 10.1016/j.sajb.2010.11.003
Ditmarová, L. et al. Physiological responses of Norway spruce (Piceaabies) seedlings to drought stress. Tree Physiol. 30, 205–213 (2010).
pubmed: 20038503
doi: 10.1093/treephys/tpp116
Moore, J. P. et al. Adaptations of higher plant cell walls to water loss: Drought vs desiccation. Physiol. Plant. 134, 237–245 (2010).
doi: 10.1111/j.1399-3054.2008.01134.x
Bacelar, E. et al. Immediate responses and adaptive strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Sci. 170, 596–605 (2006).
doi: 10.1016/j.plantsci.2005.10.014
Seki, M. et al. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 10, 296–302 (2007).
pubmed: 17468040
doi: 10.1016/j.pbi.2007.04.014
Weltzin, J. F. & Mcpherson, G. R. Implications of precipitation redistribution for shifts in temperate savanna ecotones. Ecology 81, 1902–1913 (2000).
doi: 10.1890/0012-9658(2000)081[1902:IOPRFS]2.0.CO;2
Xu, H., Li, Y. G. & Zou, T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 30, 399–409 (2010).
doi: 10.1111/j.1365-3040.2006.001626.x
Chen, J. L. et al. Responses to drought stress in germinating seeds of Agriophyllum squarrosum (L.) Moq and Setaria viridis (L.) Beauv. Fresenius Environ. Bull. 30, 4730–4741 (2021).
Sheokand, S., Kumari, A. & Sawhney, V. Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol. Mol. Biol. Plants 14, 355–362 (2008).
pubmed: 23572902
doi: 10.1007/s12298-008-0034-y
Thakur, S. & Kapila, S. Seasonal changes in antioxidant enzymes, polyphenol oxidase enzyme, flavonoids and phenolic content in three leafy liverworts. Lindbergia 5, 39–44 (2018).
doi: 10.25227/linbg.01076
An, M. J. et al. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J. Plant Growth Regul. 10, 1–10 (2019).
Zhang, Z. F. & Xiao, B. Z. Comparative alternative splicing analysis of two contrasting rice cultivars under drought stress and association of differential splicing genes with drought response QTLs. Euphytica 214, 73–89 (2018).
doi: 10.1007/s10681-018-2152-0
Mafakheri, A. et al. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4, 580–585 (2010).
Guadagno, C. R. et al. Dead or alive? Using membrane failure and chlorophyll fluorescence to predict mortality from drought. Plant Physiol. 175, 223–234 (2017).
pubmed: 28710130
pmcid: 5580738
doi: 10.1104/pp.16.00581
Li, G. L. et al. Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings. Russ. J. Plant Physiol. 60, 337–342 (2013).
doi: 10.1134/S1021443713020155
Guo, P. G. et al. QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163, 203–214 (2008).
doi: 10.1007/s10681-007-9629-6
Matos, M. C. et al. Drought effect on photosynthetic activity, osmolyte accumulation and membrane integrity of two Cicer arietinum genotypes. Photosynthetica 48, 303–312 (2010).
doi: 10.1007/s11099-010-0038-z
Xiao, X. W., Xu, X. & Yan, F. Adaptive responses to progressive drought stress in two populous cathayana populations. Silva Fennica 42, 705–719 (2008).
doi: 10.14214/sf.224
Javadi, T. et al. Mitigating the adverse effects of drought stress on the morpho-physiological traits and anti-oxidative enzyme activities of Prunu savium through β-amino butyric acid drenching. Sci. Hortic. 218, 156–163 (2017).
doi: 10.1016/j.scienta.2017.02.019
Liu, C. et al. Responses of the antioxidant defense system to drought stress in the leaves of Fargesia denudata seedlings, the staple food of the giant panda. Russ. J. Plant Physiol. 61, 374–383 (2014).
doi: 10.1134/S1021443714020083
Masoumi, H. et al. Effects of different levels of water deficit stresses on the morphologic properties of root, antioxidants activity and the seed yield in five cultivars of soybean (Glycine max L). J. Appl. Polym. Sci. 125, 804–811 (2014).
Alhoshan, M. et al. Effect of soil drought on biomass production, physiological attributes and antioxidant enzymes activities of potato cultivars. Russ. J. Plant Physiol. 66, 265–277 (2018).
doi: 10.1134/S1021443719020031
Li, J. Y. et al. Historical grassland desertification changes in the Horqin Sandy Land, Northern China (1985–2013). Sci. Rep. 7, 1–12 (2017).
Zhang, J. et al. Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. J. Arid Environ. 62, 555–566 (2005).
doi: 10.1016/j.jaridenv.2005.01.016
Huang, G. et al. Fine root dynamics and longevity of Artemisia halodendron reflect plant growth strategy in two contrasting habitats. J. Arid Environ. 79, 1–7 (2012).
doi: 10.1016/j.jaridenv.2011.08.018
Zhao, H. L. et al. Effects of desertification on soil and crop growth properties in Horqin sandy cropland of Inner Mongolia, north China. Soil Tillage Res. 87, 175–185 (2006).
doi: 10.1016/j.still.2005.03.009
Li, J. et al. Growth and physiological responses of Agriophyllum squarrosum to sand burial stress. J. Arid Land 7, 94–100 (2015).
doi: 10.1007/s40333-014-0033-5
Qu, H. et al. Effects of sand burial stress on maize (Zea mays L.) growth and physiological responses. Aust. J. Crop Sci. 6, 869–876 (2012).
Liu, H. et al. OsNOA1/RIF1 is a functional homolog of AtNOA1/RIF1: Implication for a highly conserved plant cGTPase essential for chloroplast function. New Phytol. 187, 83–105 (2010).
pubmed: 20456051
doi: 10.1111/j.1469-8137.2010.03264.x
Krause, G. H. & Weis, E. Chlorophyll fluorescence as a tool in plant physiology. Photosynth. Res. 5, 139–157 (1984).
pubmed: 24458602
doi: 10.1007/BF00028527
Foad, M. & Ismail, A. M. Responses of photosynthesis, chlorophyll fluorescence and ros-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot. 6, 1161–1173 (2007).
Flexas, J. et al. Decreased rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO
doi: 10.1111/j.1469-8137.2006.01794.x
An, Y. Y. & Liang, Z. S. Drought tolerance of Periploca sepium during seed germination: Antioxidant defense and compatible solutes accumulation. Acta Physiol. Plant. 35, 959–967 (2013).
doi: 10.1007/s11738-012-1139-z
Giannopolitis, C. N. & Ries, S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59, 309–314 (1977).
pubmed: 16659839
pmcid: 542387
doi: 10.1104/pp.59.2.309
Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys 125, 189–198 (1968).
pubmed: 5655425
doi: 10.1016/0003-9861(68)90654-1
Baker, N. R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).
pubmed: 18444897
doi: 10.1146/annurev.arplant.59.032607.092759
Naumann, J. C., Young, D. R. & Anderson, J. E. Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol. Plant. 131, 422–433 (2010).
doi: 10.1111/j.1399-3054.2007.00973.x
Vereb, G. et al. Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model. Proc. Natl. Acad. Sci. 100, 8053–8058 (2003).
pubmed: 12832616
pmcid: 166180
doi: 10.1073/pnas.1332550100
Soltys-Kalina, D. et al. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breed. Sci. 66, 328–331 (2016).
pubmed: 27162504
pmcid: 4785010
doi: 10.1270/jsbbs.66.328
Zhao, H. L. et al. Effects of wind and wind–sand flow on membrane permeability and membrane protection system of corn seedling leaf. Chin. J. Eco-Agric. 22, 1440–1445 (2014) ((in Chinese)).
Luo, Y. Q. et al. Effects of foliage litter of a pioneer shrub (Artemisia halodendron) on germination from the soil seedbank in a semi-arid sandy grassland in China. J. Plant Res. 130, 1–9 (2017).
doi: 10.1007/s10265-017-0954-0
Mazorra, L. M. et al. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol. Plant. 45, 593–596 (2002).
doi: 10.1023/A:1022390917656
Zhou, R. L. et al. The relationship between growth of Caraganas stenophylla and the activities and isoforms of protective enzymes under different depths of sand burial. Acta Ecol. Sin. 35, 3014–3022 (2015).
Chen, J. L. et al. Effects of precipitation on growth and physiology of three psammophytes in the Horqin Sandy Land, China. J. Desert Res. 39, 163–173 (2019) ((in Chinese)).
Bowler, C. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83–116 (1992).
doi: 10.1146/annurev.pp.43.060192.000503