Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery.
Biocompatible Materials
/ adverse effects
Female
Foreign-Body Reaction
/ etiology
Gynecologic Surgical Procedures
/ adverse effects
Humans
Pelvic Organ Prolapse
/ surgery
Polypropylenes
/ adverse effects
Postoperative Complications
/ etiology
Risk Factors
Surgical Mesh
/ adverse effects
Urinary Incontinence, Stress
/ surgery
Urologic Surgical Procedures
/ adverse effects
Journal
Nature reviews. Urology
ISSN: 1759-4820
Titre abrégé: Nat Rev Urol
Pays: England
ID NLM: 101500082
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
accepted:
29
07
2021
pubmed:
22
9
2021
medline:
1
2
2022
entrez:
21
9
2021
Statut:
ppublish
Résumé
Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.
Identifiants
pubmed: 34545239
doi: 10.1038/s41585-021-00511-y
pii: 10.1038/s41585-021-00511-y
doi:
Substances chimiques
Biocompatible Materials
0
Polypropylenes
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
725-738Informations de copyright
© 2021. Springer Nature Limited.
Références
Wu, J. M., Matthews, C. A., Conover, M. M., Pate, V. & Jonsson Funk, M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet. Gynecol. 123, 1201–1206 (2014).
pubmed: 24807341
pmcid: 4174312
doi: 10.1097/AOG.0000000000000286
Smith, F. J., Holman, C. D. J., Moorin, R. E. & Tsokos, N. Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet. Gynecol. 116, 1096–1100 (2010).
pubmed: 20966694
doi: 10.1097/AOG.0b013e3181f73729
Haylen, B. T. et al. An international urogynecological association (IUGA)/international continence society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. 29, 4–20 (2010).
pubmed: 19941278
doi: 10.1002/nau.20798
Jelovsek, J. E. et al. Effect of uterosacral ligament suspension vs sacrospinous ligament fixation with or without perioperative behavioral therapy for pelvic organ vaginal prolapse on surgical outcomes and prolapse symptoms at 5 years in the OPTIMAL Randomized Clinical Trial. JAMA 319, 1554 (2018).
pubmed: 29677302
pmcid: 5933329
doi: 10.1001/jama.2018.2827
Lapitan, M. C. M., Cody, J. D. & Mashayekhi, A. Open retropubic colposuspension for urinary incontinence in women. Cochrane Database Syst. Rev. 2, CD002912 (2017).
Joint Writing Group of the American Urogynecologic Society & the International Urogynecological Association. Joint report on terminology for surgical procedures to treat pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 26, 173–201 (2020).
doi: 10.1097/SPV.0000000000000846
Chapple, C. R. et al. Consensus statement of the European Urology Association and the European Urogynaecological Association on the use of implanted materials for treating pelvic organ prolapse and stress urinary incontinence. Eur. Urol. 72, 424–431 (2017).
pubmed: 28413126
doi: 10.1016/j.eururo.2017.03.048
Barone, W. R., Abramowitch, S. D. & Moalli, P. A. in Host Response to Biomaterials Ch. 13 (ed. Badylak, S. F.) 375–423 (Academic, 2015).
Chu, C. C. in Biotextiles Medical Implants (ed. King, M. W.) 275–334 (Woodhead, 2013).
Brown, C. & Finch, J. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 92, 272–278 (2010).
pubmed: 20501011
pmcid: 3025220
doi: 10.1308/003588410X12664192076296
Mangir, N., Roman, S., Chapple, C. R. & MacNeil, S. Complications related to use of mesh implants in surgical treatment of stress urinary incontinence and pelvic organ prolapse: infection or inflammation? World J. Urol. 38, 73–80 (2020).
pubmed: 30759272
doi: 10.1007/s00345-019-02679-w
Mangir, N., Aldemir Dikici, B., Chapple, C. R. & MacNeil, S. Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP. Nat. Rev. Urol. 16, 675–689 (2019).
pubmed: 31548731
doi: 10.1038/s41585-019-0230-2
Balsamo, R. et al. Sacrocolpopexy with polyvinylidene fluoride mesh for pelvic organ prolapse: mid term comparative outcomes with polypropylene mesh. Eur. J. Obstet. Gynecol. Reprod. Biol. 220, 74–78 (2018).
pubmed: 29175131
doi: 10.1016/j.ejogrb.2017.11.018
Barski, D. et al. Transvaginal PVDF-mesh for cystocele repair: a cohort study. Int. J. Surg. 39, 249–254 (2017).
pubmed: 28192248
doi: 10.1016/j.ijsu.2017.02.006
Kawaguchi, S. et al. Transvaginal polytetrafluoroethylene mesh surgery for pelvic organ prolapse: 1-year clinical outcomes. Int. J. Urol. 28, 268–272 (2021).
pubmed: 33760315
doi: 10.1111/iju.14444
Ford, A. A., Rogerson, L., Cody, J. D., Aluko, P. & Ogah, J. A. Mid-urethral sling operations for stress urinary incontinence in women. Cochrane Database Syst. Rev. 1, CD006375 (2017).
Glazener, C. M. et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT). Lancet 389, 381–392 (2017).
pubmed: 28010989
doi: 10.1016/S0140-6736(16)31596-3
Welk, B., Al-Hothi, H. & Winick-Ng, J. Removal or revision of vaginal mesh used for the treatment of stress urinary incontinence. JAMA Surg. 150, 1167 (2015).
pubmed: 26352538
doi: 10.1001/jamasurg.2015.2590
Morling, J. R. et al. Adverse events after first, single, mesh and non-mesh surgical procedures for stress urinary incontinence and pelvic organ prolapse in Scotland, 1997–2016: a population-based cohort study. Lancet 389, 629–640 (2017).
pubmed: 28010993
doi: 10.1016/S0140-6736(16)32572-7
Keltie, K. et al. Complications following vaginal mesh procedures for stress urinary incontinence: an 8 year study of 92,246 women. Sci. Rep. 7, 12015 (2017).
pubmed: 28931856
pmcid: 5607307
doi: 10.1038/s41598-017-11821-w
Maher, C. et al. Surgery for women with apical vaginal prolapse. Cochrane Database Syst. Rev. 10, CD012376 (2016).
pubmed: 27696355
Mucowski, S. J., Jurnalov, C. & Phelps, J. Y. Use of vaginal mesh in the face of recent FDA warnings and litigation. Am. J. Obstet. Gynecol. 203, 103.e1–103.e4 (2010).
doi: 10.1016/j.ajog.2010.01.060
Food and Drug Administration. Serious complications associated with transvaginal placement of surgical mesh for pelvic organ prolapse: FDA safety communication (FDA, 2011).
Sedrakyan, A., Chughtai, B. & Mao, J. Regulatory warnings and use of surgical mesh in pelvic organ prolapse. JAMA Intern. Med. 176, 275 (2016).
pubmed: 26713426
doi: 10.1001/jamainternmed.2015.6595
Scottish Independent Review. Scottish Independent Review of the use, safety and efficacy of transvaginal mesh implants in the treatment of stress urinary incontinence and pelvic organ prolapse in women (2017).
Wall, L. L. & Brown, D. The perils of commercially driven surgical innovation. Am. J. Obstet. Gynecol. 202, 30.e1–4 (2010).
doi: 10.1016/j.ajog.2009.05.031
Danish Medicines Agency. Withdrawal of vaginal mesh. Laegemiddelstyrelsen https://laegemiddelstyrelsen.dk/en/news/2019/withdrawal-of-vaginal-mesh (2019).
Gardner, A. B., Lee, S. K. C., Woods, E. C. & Acharya, A. P. Biomaterials-based modulation of the immune system. Biomed. Res. Int. 2013, 1–7 (2013).
doi: 10.1155/2013/732182
Nolfi, A. L. et al. Host response to synthetic mesh in women with mesh complications. Am. J. Obstet. Gynecol. 215, 206.e1–206.e8 (2016).
doi: 10.1016/j.ajog.2016.04.008
Kelly, M., Macdougall, K., Olabisi, O. & McGuire, N. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility. Int. Urogynecol. J. 28, 171–180 (2017).
pubmed: 27216918
doi: 10.1007/s00192-016-3029-1
Brown, B. N. & Badylak, S. F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater. 9, 4948–4955 (2013).
pubmed: 23099303
doi: 10.1016/j.actbio.2012.10.025
de Almeida, S. H. M., Rodrigues, M. A. F., Gregório, É., Crespígio, J. & Moreira, H. A. Influence of sling material on inflammation and collagen deposit in an animal model. Int. J. Urol. 14, 1040–1043 (2007).
pubmed: 17956533
doi: 10.1111/j.1442-2042.2007.01888.x
Faulk, D. M. et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 35, 8585–8595 (2014).
pubmed: 25043571
pmcid: 5942585
doi: 10.1016/j.biomaterials.2014.06.057
Mariani, E., Lisignoli, G., Borzì, R. M. & Pulsatelli, L. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 636 (2019).
pmcid: 6386828
doi: 10.3390/ijms20030636
Abed, H. et al. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int. Urogynecol. J. 22, 789–798 (2011).
pubmed: 21424785
doi: 10.1007/s00192-011-1384-5
Olsen, A., Smith, V., Bergstrom, J., Colling, J. & Clark, A. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet. Gynecol. 89, 501–506 (1997).
pubmed: 9083302
doi: 10.1016/S0029-7844(97)00058-6
Milani, A. L., Damoiseaux, A., IntHout, J., Kluivers, K. B. & Withagen, M. I. J. Long-term outcome of vaginal mesh or native tissue in recurrent prolapse: a randomized controlled trial. Int. Urogynecol. J. 29, 847–858 (2018).
pubmed: 29167974
doi: 10.1007/s00192-017-3512-3
MacDonald, S., Terlecki, R., Costantini, E. & Badlani, G. Complications of transvaginal mesh for pelvic organ prolapse and stress urinary incontinence: tips for prevention, recognition, and management. Eur. Urol. Focus. 2, 260–267 (2016).
pubmed: 28723371
doi: 10.1016/j.euf.2016.06.016
Nygaard, I. et al. Long-term outcomes following abdominal sacrocolpopexy for pelvic organ prolapse. JAMA 309, 2016–2024 (2013).
pubmed: 23677313
pmcid: 3747840
doi: 10.1001/jama.2013.4919
Izett-Kay, M. L. et al. Long-term mesh complications and reoperation after laparoscopic mesh sacrohysteropexy: a cross-sectional study. Int. Urogynecol. J. 31, 2595–2602 (2020).
pubmed: 32620978
pmcid: 7679361
doi: 10.1007/s00192-020-04396-0
Fall, M. et al. EAU guidelines on chronic pelvic pain. Eur. Urol. 57, 35–48 (2010).
pubmed: 19733958
doi: 10.1016/j.eururo.2009.08.020
Breivik, H., Collett, B., Ventafridda, V., Cohen, R. & Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10, 287–333 (2006).
pubmed: 16095934
doi: 10.1016/j.ejpain.2005.06.009
Maher, C. et al. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse. Cochrane Database Syst. Rev. 2, CD012079 (2016).
pubmed: 26858090
Caquant, F. et al. Safety of trans vaginal mesh procedure: retrospective study of 684 patients. J. Obstet. Gynaecol. Res. 34, 449–456 (2008).
pubmed: 18937698
doi: 10.1111/j.1447-0756.2008.00820.x
Clavé, A. et al. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int. Urogynecol. J. 21, 261–270 (2010).
pubmed: 20052576
doi: 10.1007/s00192-009-1021-8
Artsen, A. M. et al. Mesh induced fibrosis: the protective role of T regulatory cells. Acta Biomater. 96, 203–210 (2019).
pubmed: 31326666
pmcid: 6717663
doi: 10.1016/j.actbio.2019.07.031
Goodall, E. J., Cartwright, R., Stratta, E. C., Jackson, S. R. & Price, N. Outcomes after laparoscopic removal of retropubic midurethral slings for chronic pain. Int. Urogynecol. J. 30, 1323–1328 (2019).
pubmed: 30229269
doi: 10.1007/s00192-018-3756-6
Barski, D. & Deng, D. Y. Management of mesh complications after SUI and POP repair: review and analysis of the current literature. Biomed Res. Int. 2015, 831285 (2015).
pubmed: 25973425
pmcid: 4418012
doi: 10.1155/2015/831285
Javadian, P. & O’Leary, D. Vaginally placed meshes: a review of their complications, risk factors, and management. Curr. Obstet. Gynecol. Rep. 4, 96–101 (2015).
doi: 10.1007/s13669-015-0118-y
Sirls, L. T. et al. Exploring predictors of mesh exposure after vaginal prolapse repair. Female Pelvic Med. Reconstr. Surg. 19, 206–209 (2013).
pubmed: 23797518
doi: 10.1097/SPV.0b013e318298b381
Elmér, C. et al. Risk factors for mesh complications after trocar guided transvaginal mesh kit repair of anterior vaginal wall prolapse. Neurourol. Urodyn. 31, 1165–1169 (2012).
pubmed: 22517125
doi: 10.1002/nau.22231
Cundiff, G. W. et al. Risk factors for mesh/suture erosion following sacral colpopexy. Am. J. Obstet. Gynecol. 199, 688.e1–688.e5 (2008).
doi: 10.1016/j.ajog.2008.07.029
Deng, T., Liao, B., Luo, D., Shen, H. & Wang, K. Risk factors for mesh erosion after female pelvic floor reconstructive surgery: a systematic review and meta-analysis. BJU Int. 117, 323–343 (2016).
pubmed: 25906691
doi: 10.1111/bju.13158
Kokanali, M. K. et al. Risk factors for mesh erosion after vaginal sling procedures for urinary incontinence. Eur. J. Obstet. Gynecol. Reprod. Biol. 177, 146–150 (2014).
pubmed: 24793930
doi: 10.1016/j.ejogrb.2014.03.039
Rao, A., Avula, M. & Grainger, D. in Host Response to Biomaterials Ch. 11 (ed. Badylak, S. F.) 269–313 (Academic, 2015).
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
pubmed: 17167474
doi: 10.1038/nature05485
Wilkins, J., Ghosh, P., Vivar, J., Chakraborty, B. & Ghosh, S. Exploring the associations between systemic inflammation, obesity and healthy days: a health related quality of life (HRQOL) analysis of NHANES 2005–2008. BMC Obes. 5, 21 (2018).
pubmed: 30123515
pmcid: 6091152
doi: 10.1186/s40608-018-0196-2
Patnam, R. et al. Effect of BMI on clinical outcomes following minimally invasive sacrocolpopexy. J. Robot. Surg. 15, 63–68 (2021).
pubmed: 32300933
doi: 10.1007/s11701-020-01079-2
Davila, G. W., Baessler, K., Cosson, M. & Cardozo, L. Selection of patients in whom vaginal graft use may be appropriate. Int. Urogynecol. J. 23, 7–14 (2012).
doi: 10.1007/s00192-012-1677-3
Bradley, C. S., Visco, A. G., Weber LeBrun, E. E. & Barber, M. D. The pelvic floor disorders registry: purpose and development. Female Pelvic Med. Reconstr. Surg. 22, 77–82 (2016).
pubmed: 26829344
doi: 10.1097/SPV.0000000000000254
Silva, M. M. et al. Systemic inflammatory reaction after silicone breast implant. Aesthetic Plast. Surg. 35, 789–794 (2011).
pubmed: 21424173
doi: 10.1007/s00266-011-9688-x
Yao, Z., Lin, T.-H., Pajarinen, J., Sato, T. & Goodman, S. in Host Response to Biomaterials Ch. 12 (ed. Badylak, S. F.) 315–373 (Academic, 2015).
Tennyson, L. et al. Characterization of the T-cell response to polypropylene mesh in women with complications. Am. J. Obstet. Gynecol. 220, 187.e1–187.e8 (2019).
doi: 10.1016/j.ajog.2018.11.121
Robichaud, A. et al. Avoidance of the vaginal incision site for mesh placement in vaginal wall prolapse surgery: a prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 131–136 (2017).
pubmed: 28898685
doi: 10.1016/j.ejogrb.2017.08.039
Leanza, V., Zanghì, G., Vecchio, R. & Leanza, G. How to prevent mesh erosion in transobturator Tension-Free Incontinence Cystocoele Treatment (TICT): a comparative survey. G. Chir. 36, 21–25 (2015).
pubmed: 25827665
pmcid: 4396662
Achtari, C., Hiscock, R., O’Reilly, B. A., Schierlitz, L. & Dwyer, P. L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. 16, 389–394 (2005).
doi: 10.1007/s00192-004-1272-3
Chung, L., Maestas, D. Jr, Housseau, F. & Elisseeff, J. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017).
pubmed: 28712923
doi: 10.1016/j.addr.2017.07.006
Londono, R. & Badylak, S. F. in Host Response to Biomaterials Ch. 1 (ed. Badylak, S. F.) 1–12 (Academic, 2015).
Swartzlander, M. D. et al. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 41, 26–36 (2015).
pubmed: 25522962
doi: 10.1016/j.biomaterials.2014.11.026
Horbett, T. A. Chapter 13 Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovasc. Pathol. 2, 137–148 (1993).
doi: 10.1016/1054-8807(93)90054-6
Al-Maawi, S., Orlowska, A., Sader, R., James Kirkpatrick, C. & Ghanaati, S. In vivo cellular reactions to different biomaterials — physiological and pathological aspects and their consequences. Semin. Immunol. 29, 49–61 (2017).
pubmed: 28647227
doi: 10.1016/j.smim.2017.06.001
Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).
pubmed: 18162407
doi: 10.1016/j.smim.2007.11.004
Gurevich, D. B. et al. Live imaging the Foreign Body Response reveals how dampening inflammation reduces fibrosis. J. Cell Sci. 133, jcs236075 (2019).
pubmed: 31444283
pmcid: 6899018
doi: 10.1242/jcs.236075
Chung, L. et al. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci. Transl Med. 12, eaax3799 (2020).
pubmed: 32295900
pmcid: 7219543
doi: 10.1126/scitranslmed.aax3799
Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).
pubmed: 31491445
pmcid: 6774350
doi: 10.1016/j.addr.2019.08.010
Hachim, D. et al. Effects of aging upon the host response to implants. J. Biomed. Mater. Res. A 105, 1281–1292 (2017).
pubmed: 28130823
pmcid: 5963506
doi: 10.1002/jbm.a.36013
Sadtler, K. et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040 (2016).
doi: 10.1038/natrevmats.2016.40
Duluc, D. et al. Functional diversity of human vaginal APC subsets in directing T-cell responses. Mucosal Immunol. 6, 626–638 (2013).
pubmed: 23131784
doi: 10.1038/mi.2012.104
Heymann, F. et al. Polypropylene mesh implantation for hernia repair causes myeloid cell-driven persistent inflammation. JCI Insight 4, e123862 (2019).
pmcid: 6413778
doi: 10.1172/jci.insight.123862
Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).
pubmed: 19029990
pmcid: 2724991
doi: 10.1038/nri2448
Wang, A. C., Lee, L.-Y., Lin, C.-T. & Chen, J.-R. A histologic and immunohistochemical analysis of defective vaginal healing after continence taping procedures: a prospective case-controlled pilot study. Am. J. Obstet. Gynecol. 191, 1868–1874 (2004).
pubmed: 15592267
doi: 10.1016/j.ajog.2004.09.017
Wang, A., Lin, C.T., Ko, Y.S. & Lin, Y.H. Effector mechanisms of the site specific graft rejection after intravaginal mesh implantation — a long-term prospective case-controlled study [abstract 57]. in International Continence Society (2010).
Kavvadias, T., Kaemmer, D., Klinge, U., Kuschel, S. & Schuessler, B. Foreign body reaction in vaginally eroded and noneroded polypropylene suburethral slings in the female: a case series. Int. Urogynecol. J. Pelvic Floor Dysfunct. 20, 1473–1476 (2009).
pubmed: 19727536
doi: 10.1007/s00192-009-0974-y
Smith, T. M. et al. Pathologic evaluation of explanted vaginal mesh. Female Pelvic Med. Reconstr. Surg. 19, 238–241 (2013).
pubmed: 23797523
doi: 10.1097/SPV.0b013e31829996e2
Elmer, C., Blomgren, B., Falconer, C., Zhang, A. & Altman, D. Histological inflammatory response to transvaginal polypropylene mesh for pelvic reconstructive surgery. J. Urol. 181, 1189–1195 (2009).
pubmed: 19152931
doi: 10.1016/j.juro.2008.11.030
Shi, C. et al. Clinical analysis of pain after transvaginal mesh surgery in patients with pelvic organ prolapse. BMC Womens Health 21, 46 (2021).
pubmed: 33516228
pmcid: 7847570
doi: 10.1186/s12905-021-01192-w
Crosby, E. C. et al. Symptom resolution after operative management of complications from transvaginal mesh. Obstet. Gynecol. 123, 134–139 (2014).
pubmed: 24463673
pmcid: 4055867
doi: 10.1097/AOG.0000000000000042
Holihan, J. L. et al. Mesh location in open ventral hernia repair: a systematic review and network meta-analysis. World J. Surg. 40, 89–99 (2016).
pubmed: 26423675
doi: 10.1007/s00268-015-3252-9
Wise, J. Hernia mesh complications may have affected up to 170 000 patients, investigation finds. BMJ 362, k4104 (2018).
pubmed: 30262638
doi: 10.1136/bmj.k4104
Sevinç, B., OkuŞ, A., Ay, S., Aksoy, N. & Karahan, Ö. Randomized prospective comparison of long-term results of onlay and sublay mesh repair techniques for incisional hernia. Turkish J. Surg. 34, 17–20 (2018).
de Landsheere, L. et al. Surgical intervention after transvaginal Prolift mesh repair: retrospective single-center study including 524 patients with 3 years’ median follow-up. Am. J. Obstet. Gynecol. 206, 83.e1–83.e7 (2012).
doi: 10.1016/j.ajog.2011.07.040
Wang, Y. et al. Vaginal type-II mucosa is an inductive site for primary CD8
pubmed: 25600442
doi: 10.1038/ncomms7100
Mselle, T. F. et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin. Immunol. 124, 69–76 (2007).
pubmed: 17524808
doi: 10.1016/j.clim.2007.04.008
Johansson, E. L., Rudin, A., Wassén, L. & Holmgren, J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 96, 272–277 (1999).
pubmed: 10233705
pmcid: 2326729
doi: 10.1046/j.1365-2567.1999.00675.x
Usala, S. J., Usala, F. O., Haciski, R., Holt, J. A. & Schumacher, G. F. IgG and IgA content of vaginal fluid during the menstrual cycle. J. Reprod. Med. 34, 292–294 (1989).
pubmed: 2715991
Zhou, J. Z., Way, S. S. & Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol. 39, 302–314 (2018).
pubmed: 29433961
doi: 10.1016/j.it.2018.01.007
Ghosh, M., Rodriguez-Garcia, M. & Wira, C. R. The immune system in menopause: pros and cons of hormone therapy. J. Steroid Biochem. Mol. Biol. 142, 171–175 (2014).
pubmed: 24041719
doi: 10.1016/j.jsbmb.2013.09.003
Arruvito, L., Sanz, M., Banham, A. H. & Fainboim, L. Expansion of CD4
pubmed: 17277167
doi: 10.4049/jimmunol.178.4.2572
Veit-Rubin, N. et al. Abnormal vaginal microbiome associated with vaginal mesh complications. Neurourol. Urodyn. 38, 2255–2263 (2019).
pubmed: 31402478
pmcid: 6852108
doi: 10.1002/nau.24129
Miller, E. A., Beasley, D. E., Dunn, R. R. & Archie, E. A. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front. Microbiol. 7, 1936 (2016).
pubmed: 28008325
pmcid: 5143676
doi: 10.3389/fmicb.2016.01936
Diez-Itza, I., Aizpitarte, I. & Becerro, A. Risk factors for the recurrence of pelvic organ prolapse after vaginal surgery: a review at 5 years after surgery. Int. Urogynecol. J. Pelvic Floor Dysfunct. 18, 1317–1324 (2007).
pubmed: 17333439
doi: 10.1007/s00192-007-0321-0
Whiteside, J. L., Weber, A. M., Meyn, L. A. & Walters, M. D. Risk factors for prolapse recurrence after vaginal repair. Am. J. Obstet. Gynecol. 191, 1533–1538 (2004).
pubmed: 15547521
doi: 10.1016/j.ajog.2004.06.109
Alperin, M., Cook, M., Tuttle, L. J., Esparza, M. C. & Lieber, R. L. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles. Am. J. Obstet. Gynecol. 215, 312.e1–9 (2016).
doi: 10.1016/j.ajog.2016.02.033
Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).
pubmed: 30046148
doi: 10.1038/s41574-018-0059-4
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
pubmed: 30065258
pmcid: 6146930
doi: 10.1038/s41569-018-0064-2
Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020).
pubmed: 32402267
pmcid: 7217133
doi: 10.1016/j.cmet.2020.04.015
Geller, E. J., Babb, E., Nackley, A. G. & Zolnoun, D. Incidence and risk factors for pelvic pain after mesh implant surgery for the treatment of pelvic floor disorders. J. Minim. Invasive Gynecol. 24, 67–73 (2017).
pubmed: 27773810
doi: 10.1016/j.jmig.2016.10.001
Kasyan, G., Abramyan, K., Popov, A. A., Gvozdev, M. & Pushkar, D. Mesh-related and intraoperative complications of pelvic organ prolapse repair. Cent. Eur. J. Urol. 67, 296–301 (2014).
doi: 10.5173/ceju.2014.03.art17
Sendama, W. The effect of ageing on the resolution of inflammation. Ageing Res. Rev. 57, 101000 (2020).
pubmed: 31862417
pmcid: 6961112
doi: 10.1016/j.arr.2019.101000
Sebastian-Valverde, M. & Pasinetti, G. M. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells 9, 1552 (2020).
pmcid: 7348816
doi: 10.3390/cells9061552
Khadzhieva, M. B., Kolobkov, D. S., Kamoeva, S. V. & Salnikova, L. E. Expression changes in pelvic organ prolapse: a systematic review and in silico study. Sci. Rep. 7, 7668 (2017).
pubmed: 28794464
pmcid: 5550478
doi: 10.1038/s41598-017-08185-6
Zhao, Y., Xia, Z., Lin, T. & Yin, Y. Significance of hub genes and immune cell infiltration identified by bioinformatics analysis in pelvic organ prolapse. PeerJ 8, e9773 (2020).
pubmed: 32874785
pmcid: 7441923
doi: 10.7717/peerj.9773
Mouthuy, P.-A. et al. Biocompatibility of implantable materials: an oxidative stress viewpoint. Biomaterials 109, 55–68 (2016).
pubmed: 27669498
doi: 10.1016/j.biomaterials.2016.09.010
Wattamwar, P. P. & Dziubla, T. D. in Engineering Biomaterials for Regenerative Medicine (ed. Bhatia, S.) 161–192 (Springer, 2012).
Iakovlev, V. V., Guelcher, S. A. & Bendavid, R. Degradation of polypropylene in vivo: a microscopic analysis of meshes explanted from patients. J. Biomed. Mater. Res. B Appl. Biomater. 105, 237–248 (2017).
pubmed: 26315946
doi: 10.1002/jbm.b.33502
Cochran, D. & Dziubla, T. D. in Antioxidant Polymers Ch. 15 (eds Cirilo, G. & Iemma, F.) 459–484 (Wiley, 2012).
Davison, N. L., Barrère-de Groot, F. & Grijpma, D. W. in Tissue Engineering Ch. 6 (eds Van Blitterswijk, C. A. & De Boer, J.) 177–215 (Academic, 2014).
Talley, A. D., Rogers, B. R., Iakovlev, V., Dunn, R. F. & Guelcher, S. A. Oxidation and degradation of polypropylene transvaginal mesh. J. Biomater. Sci. Polym. Ed. 28, 444–458 (2017).
pubmed: 28081670
doi: 10.1080/09205063.2017.1279045
Costello, C. R., Bachman, S. L., Ramshaw, B. J. & Grant, S. A. Materials characterization of explanted polypropylene hernia meshes. J. Biomed. Mater. Res. B 83, 44–49 (2007).
doi: 10.1002/jbm.b.30764
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996).
pubmed: 8624387
doi: 10.1016/0142-9612(96)85755-3
Thames, S. F., White, J. B. & Ong, K. L. The myth: in vivo degradation of polypropylene-based meshes. Int. Urogynecol. J. 28, 285–297 (2017).
pubmed: 27600700
doi: 10.1007/s00192-016-3131-4
Milleret, V. et al. Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers. Acta Biomater. 24, 343–351 (2015).
pubmed: 26102336
doi: 10.1016/j.actbio.2015.06.020
Serpooshan, V. et al. Protein corona influences cell-biomaterial interactions in nanostructured tissue engineering Scaffolds. Adv. Funct. Mater. 25, 4379–4389 (2015).
pubmed: 27516731
pmcid: 4978190
doi: 10.1002/adfm.201500875
Meder, F., Brandes, C., Treccani, L. & Rezwan, K. Controlling protein–particle adsorption by surface tailoring colloidal alumina particles with sulfonate groups. Acta Biomater. 9, 5780–5787 (2013).
pubmed: 23164944
doi: 10.1016/j.actbio.2012.11.012
Feola, A. et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG 120, 224–232 (2013).
pubmed: 23240801
pmcid: 3530836
doi: 10.1111/1471-0528.12077
Liang, R. et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 120, 233–243 (2013).
pubmed: 23240802
pmcid: 3531826
doi: 10.1111/1471-0528.12085
Sumner, D. R. & Galante, J. O. Determinants of stress shielding. Clin. Orthop. Relat. Res. 274, 202–212 (1992).
doi: 10.1097/00003086-199201000-00020
Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).
pubmed: 30826478
doi: 10.1016/j.actbio.2019.02.048
Ji, Y. et al. Substrate stiffness affects the immunosuppressive and trophic function of hMSCs via modulating cytoskeletal polymerization and tension. Biomater. Sci. 7, 5292–5300 (2019).
pubmed: 31612176
doi: 10.1039/C9BM01202H
Blakney, A. K., Swartzlander, M. D. & Bryant, S. J. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100, 1375–1386 (2012).
pubmed: 22407522
pmcid: 3339197
doi: 10.1002/jbm.a.34104
Roman, S. et al. Use of a simple in vitro fatigue test to assess materials used in the surgical treatment of stress urinary incontinence and pelvic organ prolapse. Neurourol. Urodyn. 38, 107–115 (2019).
pubmed: 30248189
doi: 10.1002/nau.23823
Kruger, J. A., Yan, X., Li, X., Nielsen, P. M. F. & Nash, M. P. in Biomechanics of the Female Pelvic Floor Ch. 18 (eds Hoyte, L. & Damaser, M.) 367–382 (Academic, 2016).
Kruger, J., Hayward, L., Nielsen, P., Loiselle, D. & Kirton, R. Design and development of a novel intra-vaginal pressure sensor. Int. Urogynecol. J. 24, 1715–1721 (2013).
pubmed: 23640001
doi: 10.1007/s00192-013-2097-8
Velayudhan, S., Martin, D. & Cooper-White, J. Evaluation of dynamic creep properties of surgical mesh prostheses — uniaxial fatigue. J. Biomed. Mater. Res. B 91, 287–296 (2009).
doi: 10.1002/jbm.b.31401
Liang, R., Knight, K., Abramowitch, S. & Moalli, P. A. Exploring the basic science of prolapse meshes. Curr. Opin. Obstet. Gynecol. 28, 413–419 (2016).
pubmed: 27517341
pmcid: 5161092
doi: 10.1097/GCO.0000000000000313
Durst, P. J. & Heit, M. H. Polypropylene mesh predicts mesh/suture exposure after sacrocolpopexy independent of known risk factors: a retrospective case-control study. Female Pelvic Med. Reconstr. Surg. 24, 360–366 (2018).
pubmed: 28657987
doi: 10.1097/SPV.0000000000000452
Goldstein, H. S. Selecting the right mesh. Hernia 3, 23–26 (1999).
doi: 10.1007/BF01576737
Barone, W. R., Moalli, P. A. & Abramowitch, S. D. Textile properties of synthetic prolapse mesh in response to uniaxial loading. Am. J. Obstet. Gynecol. 215, 326.e1–326.e9 (2016).
doi: 10.1016/j.ajog.2016.03.023
Amid, P. K. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1, 15–21 (1997).
doi: 10.1007/BF02426382
Klinge, U. & Klosterhalfen, B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia 16, 251–258 (2012).
pubmed: 22562353
pmcid: 3360857
doi: 10.1007/s10029-012-0913-6
Otto, J., Kaldenhoff, E., Kirschner-Hermanns, R., Mühl, T. & Klinge, U. Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. J. Biomed. Mater. Res. A 102, 1079–1084 (2014).
pubmed: 23625516
doi: 10.1002/jbm.a.34767
Junge, K. et al. Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbecks Arch. Surg. 397, 255–270 (2012).
pubmed: 21455703
doi: 10.1007/s00423-011-0780-0
Manodoro, S. et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG 120, 244–250 (2013).
pubmed: 23240803
doi: 10.1111/1471-0528.12081
Klinge, U. et al. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 103, 208–214 (2002).
pubmed: 11922736
doi: 10.1006/jsre.2002.6358
US Food and Drug Administration. Search the releasable 510(k) database (FDA, 2018).
Institute of Medicine. Medical Devices and the Public’s Health (National Academies, 2011).
International Consortium of Investigative Journalists. Medical devices harm patients worldwide as governments fail on safety. ICIJ https://www.icij.org/investigations/implant-files/medical-devices-harm-patients-worldwide-as-governments-fail-on-safety/ (2018).
Heneghan, C. et al. Transvaginal mesh failure: lessons for regulation of implantable devices. BMJ 359, j5515 (2017).
pubmed: 29217786
doi: 10.1136/bmj.j5515
Zargar, N. & Carr, A. The regulatory ancestral network of surgical meshes. PLoS ONE 13, e0197883 (2018).
pubmed: 29920525
pmcid: 6007828
doi: 10.1371/journal.pone.0197883
Ostergard, D. R. Vaginal mesh grafts and the Food and Drug Administration. Int. Urogynecol. J. 21, 1181–1183 (2010).
pubmed: 20683578
pmcid: 2931637
doi: 10.1007/s00192-010-1227-9
Heneghan, C. et al. Trials of transvaginal mesh devices for pelvic organ prolapse: a systematic database review of the US FDA approval process. BMJ Open 7, e017125 (2017).
pubmed: 29212782
pmcid: 5728256
doi: 10.1136/bmjopen-2017-017125
Barber, S. Surgical mesh implants (House of Commons Library, 2018).
Obstetrical and Gynecological Devices. Reclassification of Surgical mesh for transvaginal pelvic organ prolapse repair; final order. Fed. Regist. 81, 353–361 (2016).
US Food and Drug Administration. Code of Federal Regulations — Title 21 (FDA, 2019).
Hartung, T. & Daston, G. Are in vitro tests suitable for regulatory use? Toxicol. Sci. 111, 233–237 (2009).
pubmed: 19617452
doi: 10.1093/toxsci/kfp149
International Organization for Standardization. ISO 10993-6:2016: biological evaluation of medical devices — Part 6: Tests for local effects after implantation (ISO, 2020).
International Organization for Standardization. ISO 10993-11:2006: biological evaluation of medical devices — Part 11: Tests for systemic toxicity (ISO, 2020).
Hast, M. W., Zuskov, A. & Soslowsky, L. J. The role of animal models in tendon research. Bone Jt. Res. 3, 193–202 (2014).
doi: 10.1302/2046-3758.36.2000281
Pierce, L. M. et al. Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am. J. Obstet. Gynecol. 200, 546.e1–546.e8 (2009).
doi: 10.1016/j.ajog.2008.12.040
Ostergard, D. R. Degradation, infection and heat effects on polypropylene mesh for pelvic implantation: what was known and when it was known. Int. Urogynecol. J. 22, 771–774 (2011).
pubmed: 21512830
pmcid: 3112322
doi: 10.1007/s00192-011-1399-y
Medicines and Healthcare Products Regulatory Agency. Yellow card scheme. Yellow Card https://yellowcard.mhra.gov.uk/ (2021).
US Food and Drug Administration. MAUDE — manufacturer and user facility device experience (FDA, 2021).
Rimmer, A. Vaginal mesh procedures need compulsory register, says Royal College. BMJ 360, k586 (2018).
pubmed: 29437659
doi: 10.1136/bmj.k586
National Joint Registry. Welcome to the national joint registry (NJR). NJR http://www.njrcentre.org.uk/njrcentre/ (2020).
NHS Digital. Breast and cosmetic implant registry (NHS Digital, 2021).
Hansen, U. D., Gradel, K. O. & Larsen, M. D. Danish urogynaecological database. Clin. Epidemiol. 8, 709–712 (2016).
pubmed: 27826217
pmcid: 5096783
doi: 10.2147/CLEP.S99511
Daly, J. O., Ahern, S., Herkes, R. & O’Connell, H. E. The Australasian pelvic floor procedure registry: not before time. Aust. N. Zeal. J. Obstet. Gynaecol. 59, 473–476 (2019).
doi: 10.1111/ajo.13030
New Zealand Ministry of Health. Surgical mesh registry: cost benefit analysis (Deloitte, 2018).
Bako, A. & Dhar, R. Review of synthetic mesh-related complications in pelvic floor reconstructive surgery. Int. Urogynecol. J. 20, 103–111 (2009).
doi: 10.1007/s00192-008-0717-5
International Association for the Study of Pain. Definition of pain. IASP https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Pain (2020).
Haylen, B. et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) and grafts in female pelvic floor surgery. Neurourol. Urodyn. 30, 2–12 (2011).
pubmed: 21181958
doi: 10.1002/nau.21036