Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery.


Journal

Nature reviews. Urology
ISSN: 1759-4820
Titre abrégé: Nat Rev Urol
Pays: England
ID NLM: 101500082

Informations de publication

Date de publication:
12 2021
Historique:
accepted: 29 07 2021
pubmed: 22 9 2021
medline: 1 2 2022
entrez: 21 9 2021
Statut: ppublish

Résumé

Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.

Identifiants

pubmed: 34545239
doi: 10.1038/s41585-021-00511-y
pii: 10.1038/s41585-021-00511-y
doi:

Substances chimiques

Biocompatible Materials 0
Polypropylenes 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

725-738

Informations de copyright

© 2021. Springer Nature Limited.

Références

Wu, J. M., Matthews, C. A., Conover, M. M., Pate, V. & Jonsson Funk, M. Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet. Gynecol. 123, 1201–1206 (2014).
pubmed: 24807341 pmcid: 4174312 doi: 10.1097/AOG.0000000000000286
Smith, F. J., Holman, C. D. J., Moorin, R. E. & Tsokos, N. Lifetime risk of undergoing surgery for pelvic organ prolapse. Obstet. Gynecol. 116, 1096–1100 (2010).
pubmed: 20966694 doi: 10.1097/AOG.0b013e3181f73729
Haylen, B. T. et al. An international urogynecological association (IUGA)/international continence society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. 29, 4–20 (2010).
pubmed: 19941278 doi: 10.1002/nau.20798
Jelovsek, J. E. et al. Effect of uterosacral ligament suspension vs sacrospinous ligament fixation with or without perioperative behavioral therapy for pelvic organ vaginal prolapse on surgical outcomes and prolapse symptoms at 5 years in the OPTIMAL Randomized Clinical Trial. JAMA 319, 1554 (2018).
pubmed: 29677302 pmcid: 5933329 doi: 10.1001/jama.2018.2827
Lapitan, M. C. M., Cody, J. D. & Mashayekhi, A. Open retropubic colposuspension for urinary incontinence in women. Cochrane Database Syst. Rev. 2, CD002912 (2017).
Joint Writing Group of the American Urogynecologic Society & the International Urogynecological Association. Joint report on terminology for surgical procedures to treat pelvic organ prolapse. Female Pelvic Med. Reconstr. Surg. 26, 173–201 (2020).
doi: 10.1097/SPV.0000000000000846
Chapple, C. R. et al. Consensus statement of the European Urology Association and the European Urogynaecological Association on the use of implanted materials for treating pelvic organ prolapse and stress urinary incontinence. Eur. Urol. 72, 424–431 (2017).
pubmed: 28413126 doi: 10.1016/j.eururo.2017.03.048
Barone, W. R., Abramowitch, S. D. & Moalli, P. A. in Host Response to Biomaterials Ch. 13 (ed. Badylak, S. F.) 375–423 (Academic, 2015).
Chu, C. C. in Biotextiles Medical Implants (ed. King, M. W.) 275–334 (Woodhead, 2013).
Brown, C. & Finch, J. Which mesh for hernia repair? Ann. R. Coll. Surg. Engl. 92, 272–278 (2010).
pubmed: 20501011 pmcid: 3025220 doi: 10.1308/003588410X12664192076296
Mangir, N., Roman, S., Chapple, C. R. & MacNeil, S. Complications related to use of mesh implants in surgical treatment of stress urinary incontinence and pelvic organ prolapse: infection or inflammation? World J. Urol. 38, 73–80 (2020).
pubmed: 30759272 doi: 10.1007/s00345-019-02679-w
Mangir, N., Aldemir Dikici, B., Chapple, C. R. & MacNeil, S. Landmarks in vaginal mesh development: polypropylene mesh for treatment of SUI and POP. Nat. Rev. Urol. 16, 675–689 (2019).
pubmed: 31548731 doi: 10.1038/s41585-019-0230-2
Balsamo, R. et al. Sacrocolpopexy with polyvinylidene fluoride mesh for pelvic organ prolapse: mid term comparative outcomes with polypropylene mesh. Eur. J. Obstet. Gynecol. Reprod. Biol. 220, 74–78 (2018).
pubmed: 29175131 doi: 10.1016/j.ejogrb.2017.11.018
Barski, D. et al. Transvaginal PVDF-mesh for cystocele repair: a cohort study. Int. J. Surg. 39, 249–254 (2017).
pubmed: 28192248 doi: 10.1016/j.ijsu.2017.02.006
Kawaguchi, S. et al. Transvaginal polytetrafluoroethylene mesh surgery for pelvic organ prolapse: 1-year clinical outcomes. Int. J. Urol. 28, 268–272 (2021).
pubmed: 33760315 doi: 10.1111/iju.14444
Ford, A. A., Rogerson, L., Cody, J. D., Aluko, P. & Ogah, J. A. Mid-urethral sling operations for stress urinary incontinence in women. Cochrane Database Syst. Rev. 1, CD006375 (2017).
Glazener, C. M. et al. Mesh, graft, or standard repair for women having primary transvaginal anterior or posterior compartment prolapse surgery: two parallel-group, multicentre, randomised, controlled trials (PROSPECT). Lancet 389, 381–392 (2017).
pubmed: 28010989 doi: 10.1016/S0140-6736(16)31596-3
Welk, B., Al-Hothi, H. & Winick-Ng, J. Removal or revision of vaginal mesh used for the treatment of stress urinary incontinence. JAMA Surg. 150, 1167 (2015).
pubmed: 26352538 doi: 10.1001/jamasurg.2015.2590
Morling, J. R. et al. Adverse events after first, single, mesh and non-mesh surgical procedures for stress urinary incontinence and pelvic organ prolapse in Scotland, 1997–2016: a population-based cohort study. Lancet 389, 629–640 (2017).
pubmed: 28010993 doi: 10.1016/S0140-6736(16)32572-7
Keltie, K. et al. Complications following vaginal mesh procedures for stress urinary incontinence: an 8 year study of 92,246 women. Sci. Rep. 7, 12015 (2017).
pubmed: 28931856 pmcid: 5607307 doi: 10.1038/s41598-017-11821-w
Maher, C. et al. Surgery for women with apical vaginal prolapse. Cochrane Database Syst. Rev. 10, CD012376 (2016).
pubmed: 27696355
Mucowski, S. J., Jurnalov, C. & Phelps, J. Y. Use of vaginal mesh in the face of recent FDA warnings and litigation. Am. J. Obstet. Gynecol. 203, 103.e1–103.e4 (2010).
doi: 10.1016/j.ajog.2010.01.060
Food and Drug Administration. Serious complications associated with transvaginal placement of surgical mesh for pelvic organ prolapse: FDA safety communication (FDA, 2011).
Sedrakyan, A., Chughtai, B. & Mao, J. Regulatory warnings and use of surgical mesh in pelvic organ prolapse. JAMA Intern. Med. 176, 275 (2016).
pubmed: 26713426 doi: 10.1001/jamainternmed.2015.6595
Scottish Independent Review. Scottish Independent Review of the use, safety and efficacy of transvaginal mesh implants in the treatment of stress urinary incontinence and pelvic organ prolapse in women (2017).
Wall, L. L. & Brown, D. The perils of commercially driven surgical innovation. Am. J. Obstet. Gynecol. 202, 30.e1–4 (2010).
doi: 10.1016/j.ajog.2009.05.031
Danish Medicines Agency. Withdrawal of vaginal mesh. Laegemiddelstyrelsen https://laegemiddelstyrelsen.dk/en/news/2019/withdrawal-of-vaginal-mesh (2019).
Gardner, A. B., Lee, S. K. C., Woods, E. C. & Acharya, A. P. Biomaterials-based modulation of the immune system. Biomed. Res. Int. 2013, 1–7 (2013).
doi: 10.1155/2013/732182
Nolfi, A. L. et al. Host response to synthetic mesh in women with mesh complications. Am. J. Obstet. Gynecol. 215, 206.e1–206.e8 (2016).
doi: 10.1016/j.ajog.2016.04.008
Kelly, M., Macdougall, K., Olabisi, O. & McGuire, N. In vivo response to polypropylene following implantation in animal models: a review of biocompatibility. Int. Urogynecol. J. 28, 171–180 (2017).
pubmed: 27216918 doi: 10.1007/s00192-016-3029-1
Brown, B. N. & Badylak, S. F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater. 9, 4948–4955 (2013).
pubmed: 23099303 doi: 10.1016/j.actbio.2012.10.025
de Almeida, S. H. M., Rodrigues, M. A. F., Gregório, É., Crespígio, J. & Moreira, H. A. Influence of sling material on inflammation and collagen deposit in an animal model. Int. J. Urol. 14, 1040–1043 (2007).
pubmed: 17956533 doi: 10.1111/j.1442-2042.2007.01888.x
Faulk, D. M. et al. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomaterials 35, 8585–8595 (2014).
pubmed: 25043571 pmcid: 5942585 doi: 10.1016/j.biomaterials.2014.06.057
Mariani, E., Lisignoli, G., Borzì, R. M. & Pulsatelli, L. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 636 (2019).
pmcid: 6386828 doi: 10.3390/ijms20030636
Abed, H. et al. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int. Urogynecol. J. 22, 789–798 (2011).
pubmed: 21424785 doi: 10.1007/s00192-011-1384-5
Olsen, A., Smith, V., Bergstrom, J., Colling, J. & Clark, A. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet. Gynecol. 89, 501–506 (1997).
pubmed: 9083302 doi: 10.1016/S0029-7844(97)00058-6
Milani, A. L., Damoiseaux, A., IntHout, J., Kluivers, K. B. & Withagen, M. I. J. Long-term outcome of vaginal mesh or native tissue in recurrent prolapse: a randomized controlled trial. Int. Urogynecol. J. 29, 847–858 (2018).
pubmed: 29167974 doi: 10.1007/s00192-017-3512-3
MacDonald, S., Terlecki, R., Costantini, E. & Badlani, G. Complications of transvaginal mesh for pelvic organ prolapse and stress urinary incontinence: tips for prevention, recognition, and management. Eur. Urol. Focus. 2, 260–267 (2016).
pubmed: 28723371 doi: 10.1016/j.euf.2016.06.016
Nygaard, I. et al. Long-term outcomes following abdominal sacrocolpopexy for pelvic organ prolapse. JAMA 309, 2016–2024 (2013).
pubmed: 23677313 pmcid: 3747840 doi: 10.1001/jama.2013.4919
Izett-Kay, M. L. et al. Long-term mesh complications and reoperation after laparoscopic mesh sacrohysteropexy: a cross-sectional study. Int. Urogynecol. J. 31, 2595–2602 (2020).
pubmed: 32620978 pmcid: 7679361 doi: 10.1007/s00192-020-04396-0
Fall, M. et al. EAU guidelines on chronic pelvic pain. Eur. Urol. 57, 35–48 (2010).
pubmed: 19733958 doi: 10.1016/j.eururo.2009.08.020
Breivik, H., Collett, B., Ventafridda, V., Cohen, R. & Gallacher, D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10, 287–333 (2006).
pubmed: 16095934 doi: 10.1016/j.ejpain.2005.06.009
Maher, C. et al. Transvaginal mesh or grafts compared with native tissue repair for vaginal prolapse. Cochrane Database Syst. Rev. 2, CD012079 (2016).
pubmed: 26858090
Caquant, F. et al. Safety of trans vaginal mesh procedure: retrospective study of 684 patients. J. Obstet. Gynaecol. Res. 34, 449–456 (2008).
pubmed: 18937698 doi: 10.1111/j.1447-0756.2008.00820.x
Clavé, A. et al. Polypropylene as a reinforcement in pelvic surgery is not inert: comparative analysis of 100 explants. Int. Urogynecol. J. 21, 261–270 (2010).
pubmed: 20052576 doi: 10.1007/s00192-009-1021-8
Artsen, A. M. et al. Mesh induced fibrosis: the protective role of T regulatory cells. Acta Biomater. 96, 203–210 (2019).
pubmed: 31326666 pmcid: 6717663 doi: 10.1016/j.actbio.2019.07.031
Goodall, E. J., Cartwright, R., Stratta, E. C., Jackson, S. R. & Price, N. Outcomes after laparoscopic removal of retropubic midurethral slings for chronic pain. Int. Urogynecol. J. 30, 1323–1328 (2019).
pubmed: 30229269 doi: 10.1007/s00192-018-3756-6
Barski, D. & Deng, D. Y. Management of mesh complications after SUI and POP repair: review and analysis of the current literature. Biomed Res. Int. 2015, 831285 (2015).
pubmed: 25973425 pmcid: 4418012 doi: 10.1155/2015/831285
Javadian, P. & O’Leary, D. Vaginally placed meshes: a review of their complications, risk factors, and management. Curr. Obstet. Gynecol. Rep. 4, 96–101 (2015).
doi: 10.1007/s13669-015-0118-y
Sirls, L. T. et al. Exploring predictors of mesh exposure after vaginal prolapse repair. Female Pelvic Med. Reconstr. Surg. 19, 206–209 (2013).
pubmed: 23797518 doi: 10.1097/SPV.0b013e318298b381
Elmér, C. et al. Risk factors for mesh complications after trocar guided transvaginal mesh kit repair of anterior vaginal wall prolapse. Neurourol. Urodyn. 31, 1165–1169 (2012).
pubmed: 22517125 doi: 10.1002/nau.22231
Cundiff, G. W. et al. Risk factors for mesh/suture erosion following sacral colpopexy. Am. J. Obstet. Gynecol. 199, 688.e1–688.e5 (2008).
doi: 10.1016/j.ajog.2008.07.029
Deng, T., Liao, B., Luo, D., Shen, H. & Wang, K. Risk factors for mesh erosion after female pelvic floor reconstructive surgery: a systematic review and meta-analysis. BJU Int. 117, 323–343 (2016).
pubmed: 25906691 doi: 10.1111/bju.13158
Kokanali, M. K. et al. Risk factors for mesh erosion after vaginal sling procedures for urinary incontinence. Eur. J. Obstet. Gynecol. Reprod. Biol. 177, 146–150 (2014).
pubmed: 24793930 doi: 10.1016/j.ejogrb.2014.03.039
Rao, A., Avula, M. & Grainger, D. in Host Response to Biomaterials Ch. 11 (ed. Badylak, S. F.) 269–313 (Academic, 2015).
Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).
pubmed: 17167474 doi: 10.1038/nature05485
Wilkins, J., Ghosh, P., Vivar, J., Chakraborty, B. & Ghosh, S. Exploring the associations between systemic inflammation, obesity and healthy days: a health related quality of life (HRQOL) analysis of NHANES 2005–2008. BMC Obes. 5, 21 (2018).
pubmed: 30123515 pmcid: 6091152 doi: 10.1186/s40608-018-0196-2
Patnam, R. et al. Effect of BMI on clinical outcomes following minimally invasive sacrocolpopexy. J. Robot. Surg. 15, 63–68 (2021).
pubmed: 32300933 doi: 10.1007/s11701-020-01079-2
Davila, G. W., Baessler, K., Cosson, M. & Cardozo, L. Selection of patients in whom vaginal graft use may be appropriate. Int. Urogynecol. J. 23, 7–14 (2012).
doi: 10.1007/s00192-012-1677-3
Bradley, C. S., Visco, A. G., Weber LeBrun, E. E. & Barber, M. D. The pelvic floor disorders registry: purpose and development. Female Pelvic Med. Reconstr. Surg. 22, 77–82 (2016).
pubmed: 26829344 doi: 10.1097/SPV.0000000000000254
Silva, M. M. et al. Systemic inflammatory reaction after silicone breast implant. Aesthetic Plast. Surg. 35, 789–794 (2011).
pubmed: 21424173 doi: 10.1007/s00266-011-9688-x
Yao, Z., Lin, T.-H., Pajarinen, J., Sato, T. & Goodman, S. in Host Response to Biomaterials Ch. 12 (ed. Badylak, S. F.) 315–373 (Academic, 2015).
Tennyson, L. et al. Characterization of the T-cell response to polypropylene mesh in women with complications. Am. J. Obstet. Gynecol. 220, 187.e1–187.e8 (2019).
doi: 10.1016/j.ajog.2018.11.121
Robichaud, A. et al. Avoidance of the vaginal incision site for mesh placement in vaginal wall prolapse surgery: a prospective study. Eur. J. Obstet. Gynecol. Reprod. Biol. 217, 131–136 (2017).
pubmed: 28898685 doi: 10.1016/j.ejogrb.2017.08.039
Leanza, V., Zanghì, G., Vecchio, R. & Leanza, G. How to prevent mesh erosion in transobturator Tension-Free Incontinence Cystocoele Treatment (TICT): a comparative survey. G. Chir. 36, 21–25 (2015).
pubmed: 25827665 pmcid: 4396662
Achtari, C., Hiscock, R., O’Reilly, B. A., Schierlitz, L. & Dwyer, P. L. Risk factors for mesh erosion after transvaginal surgery using polypropylene (Atrium) or composite polypropylene/polyglactin 910 (Vypro II) mesh. Int. Urogynecol. J. 16, 389–394 (2005).
doi: 10.1007/s00192-004-1272-3
Chung, L., Maestas, D. Jr, Housseau, F. & Elisseeff, J. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 114, 184–192 (2017).
pubmed: 28712923 doi: 10.1016/j.addr.2017.07.006
Londono, R. & Badylak, S. F. in Host Response to Biomaterials Ch. 1 (ed. Badylak, S. F.) 1–12 (Academic, 2015).
Swartzlander, M. D. et al. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 41, 26–36 (2015).
pubmed: 25522962 doi: 10.1016/j.biomaterials.2014.11.026
Horbett, T. A. Chapter 13 Principles underlying the role of adsorbed plasma proteins in blood interactions with foreign materials. Cardiovasc. Pathol. 2, 137–148 (1993).
doi: 10.1016/1054-8807(93)90054-6
Al-Maawi, S., Orlowska, A., Sader, R., James Kirkpatrick, C. & Ghanaati, S. In vivo cellular reactions to different biomaterials — physiological and pathological aspects and their consequences. Semin. Immunol. 29, 49–61 (2017).
pubmed: 28647227 doi: 10.1016/j.smim.2017.06.001
Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).
pubmed: 18162407 doi: 10.1016/j.smim.2007.11.004
Gurevich, D. B. et al. Live imaging the Foreign Body Response reveals how dampening inflammation reduces fibrosis. J. Cell Sci. 133, jcs236075 (2019).
pubmed: 31444283 pmcid: 6899018 doi: 10.1242/jcs.236075
Chung, L. et al. Interleukin 17 and senescent cells regulate the foreign body response to synthetic material implants in mice and humans. Sci. Transl Med. 12, eaax3799 (2020).
pubmed: 32295900 pmcid: 7219543 doi: 10.1126/scitranslmed.aax3799
Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).
pubmed: 31491445 pmcid: 6774350 doi: 10.1016/j.addr.2019.08.010
Hachim, D. et al. Effects of aging upon the host response to implants. J. Biomed. Mater. Res. A 105, 1281–1292 (2017).
pubmed: 28130823 pmcid: 5963506 doi: 10.1002/jbm.a.36013
Sadtler, K. et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040 (2016).
doi: 10.1038/natrevmats.2016.40
Duluc, D. et al. Functional diversity of human vaginal APC subsets in directing T-cell responses. Mucosal Immunol. 6, 626–638 (2013).
pubmed: 23131784 doi: 10.1038/mi.2012.104
Heymann, F. et al. Polypropylene mesh implantation for hernia repair causes myeloid cell-driven persistent inflammation. JCI Insight 4, e123862 (2019).
pmcid: 6413778 doi: 10.1172/jci.insight.123862
Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).
pubmed: 19029990 pmcid: 2724991 doi: 10.1038/nri2448
Wang, A. C., Lee, L.-Y., Lin, C.-T. & Chen, J.-R. A histologic and immunohistochemical analysis of defective vaginal healing after continence taping procedures: a prospective case-controlled pilot study. Am. J. Obstet. Gynecol. 191, 1868–1874 (2004).
pubmed: 15592267 doi: 10.1016/j.ajog.2004.09.017
Wang, A., Lin, C.T., Ko, Y.S. & Lin, Y.H. Effector mechanisms of the site specific graft rejection after intravaginal mesh implantation — a long-term prospective case-controlled study [abstract 57]. in International Continence Society (2010).
Kavvadias, T., Kaemmer, D., Klinge, U., Kuschel, S. & Schuessler, B. Foreign body reaction in vaginally eroded and noneroded polypropylene suburethral slings in the female: a case series. Int. Urogynecol. J. Pelvic Floor Dysfunct. 20, 1473–1476 (2009).
pubmed: 19727536 doi: 10.1007/s00192-009-0974-y
Smith, T. M. et al. Pathologic evaluation of explanted vaginal mesh. Female Pelvic Med. Reconstr. Surg. 19, 238–241 (2013).
pubmed: 23797523 doi: 10.1097/SPV.0b013e31829996e2
Elmer, C., Blomgren, B., Falconer, C., Zhang, A. & Altman, D. Histological inflammatory response to transvaginal polypropylene mesh for pelvic reconstructive surgery. J. Urol. 181, 1189–1195 (2009).
pubmed: 19152931 doi: 10.1016/j.juro.2008.11.030
Shi, C. et al. Clinical analysis of pain after transvaginal mesh surgery in patients with pelvic organ prolapse. BMC Womens Health 21, 46 (2021).
pubmed: 33516228 pmcid: 7847570 doi: 10.1186/s12905-021-01192-w
Crosby, E. C. et al. Symptom resolution after operative management of complications from transvaginal mesh. Obstet. Gynecol. 123, 134–139 (2014).
pubmed: 24463673 pmcid: 4055867 doi: 10.1097/AOG.0000000000000042
Holihan, J. L. et al. Mesh location in open ventral hernia repair: a systematic review and network meta-analysis. World J. Surg. 40, 89–99 (2016).
pubmed: 26423675 doi: 10.1007/s00268-015-3252-9
Wise, J. Hernia mesh complications may have affected up to 170 000 patients, investigation finds. BMJ 362, k4104 (2018).
pubmed: 30262638 doi: 10.1136/bmj.k4104
Sevinç, B., OkuŞ, A., Ay, S., Aksoy, N. & Karahan, Ö. Randomized prospective comparison of long-term results of onlay and sublay mesh repair techniques for incisional hernia. Turkish J. Surg. 34, 17–20 (2018).
de Landsheere, L. et al. Surgical intervention after transvaginal Prolift mesh repair: retrospective single-center study including 524 patients with 3 years’ median follow-up. Am. J. Obstet. Gynecol. 206, 83.e1–83.e7 (2012).
doi: 10.1016/j.ajog.2011.07.040
Wang, Y. et al. Vaginal type-II mucosa is an inductive site for primary CD8
pubmed: 25600442 doi: 10.1038/ncomms7100
Mselle, T. F. et al. Unique characteristics of NK cells throughout the human female reproductive tract. Clin. Immunol. 124, 69–76 (2007).
pubmed: 17524808 doi: 10.1016/j.clim.2007.04.008
Johansson, E. L., Rudin, A., Wassén, L. & Holmgren, J. Distribution of lymphocytes and adhesion molecules in human cervix and vagina. Immunology 96, 272–277 (1999).
pubmed: 10233705 pmcid: 2326729 doi: 10.1046/j.1365-2567.1999.00675.x
Usala, S. J., Usala, F. O., Haciski, R., Holt, J. A. & Schumacher, G. F. IgG and IgA content of vaginal fluid during the menstrual cycle. J. Reprod. Med. 34, 292–294 (1989).
pubmed: 2715991
Zhou, J. Z., Way, S. S. & Chen, K. Immunology of the uterine and vaginal mucosae. Trends Immunol. 39, 302–314 (2018).
pubmed: 29433961 doi: 10.1016/j.it.2018.01.007
Ghosh, M., Rodriguez-Garcia, M. & Wira, C. R. The immune system in menopause: pros and cons of hormone therapy. J. Steroid Biochem. Mol. Biol. 142, 171–175 (2014).
pubmed: 24041719 doi: 10.1016/j.jsbmb.2013.09.003
Arruvito, L., Sanz, M., Banham, A. H. & Fainboim, L. Expansion of CD4
pubmed: 17277167 doi: 10.4049/jimmunol.178.4.2572
Veit-Rubin, N. et al. Abnormal vaginal microbiome associated with vaginal mesh complications. Neurourol. Urodyn. 38, 2255–2263 (2019).
pubmed: 31402478 pmcid: 6852108 doi: 10.1002/nau.24129
Miller, E. A., Beasley, D. E., Dunn, R. R. & Archie, E. A. Lactobacilli dominance and vaginal pH: why is the human vaginal microbiome unique? Front. Microbiol. 7, 1936 (2016).
pubmed: 28008325 pmcid: 5143676 doi: 10.3389/fmicb.2016.01936
Diez-Itza, I., Aizpitarte, I. & Becerro, A. Risk factors for the recurrence of pelvic organ prolapse after vaginal surgery: a review at 5 years after surgery. Int. Urogynecol. J. Pelvic Floor Dysfunct. 18, 1317–1324 (2007).
pubmed: 17333439 doi: 10.1007/s00192-007-0321-0
Whiteside, J. L., Weber, A. M., Meyn, L. A. & Walters, M. D. Risk factors for prolapse recurrence after vaginal repair. Am. J. Obstet. Gynecol. 191, 1533–1538 (2004).
pubmed: 15547521 doi: 10.1016/j.ajog.2004.06.109
Alperin, M., Cook, M., Tuttle, L. J., Esparza, M. C. & Lieber, R. L. Impact of vaginal parity and aging on the architectural design of pelvic floor muscles. Am. J. Obstet. Gynecol. 215, 312.e1–9 (2016).
doi: 10.1016/j.ajog.2016.02.033
Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).
pubmed: 30046148 doi: 10.1038/s41574-018-0059-4
Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).
pubmed: 30065258 pmcid: 6146930 doi: 10.1038/s41569-018-0064-2
Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55.e6 (2020).
pubmed: 32402267 pmcid: 7217133 doi: 10.1016/j.cmet.2020.04.015
Geller, E. J., Babb, E., Nackley, A. G. & Zolnoun, D. Incidence and risk factors for pelvic pain after mesh implant surgery for the treatment of pelvic floor disorders. J. Minim. Invasive Gynecol. 24, 67–73 (2017).
pubmed: 27773810 doi: 10.1016/j.jmig.2016.10.001
Kasyan, G., Abramyan, K., Popov, A. A., Gvozdev, M. & Pushkar, D. Mesh-related and intraoperative complications of pelvic organ prolapse repair. Cent. Eur. J. Urol. 67, 296–301 (2014).
doi: 10.5173/ceju.2014.03.art17
Sendama, W. The effect of ageing on the resolution of inflammation. Ageing Res. Rev. 57, 101000 (2020).
pubmed: 31862417 pmcid: 6961112 doi: 10.1016/j.arr.2019.101000
Sebastian-Valverde, M. & Pasinetti, G. M. The NLRP3 inflammasome as a critical actor in the inflammaging process. Cells 9, 1552 (2020).
pmcid: 7348816 doi: 10.3390/cells9061552
Khadzhieva, M. B., Kolobkov, D. S., Kamoeva, S. V. & Salnikova, L. E. Expression changes in pelvic organ prolapse: a systematic review and in silico study. Sci. Rep. 7, 7668 (2017).
pubmed: 28794464 pmcid: 5550478 doi: 10.1038/s41598-017-08185-6
Zhao, Y., Xia, Z., Lin, T. & Yin, Y. Significance of hub genes and immune cell infiltration identified by bioinformatics analysis in pelvic organ prolapse. PeerJ 8, e9773 (2020).
pubmed: 32874785 pmcid: 7441923 doi: 10.7717/peerj.9773
Mouthuy, P.-A. et al. Biocompatibility of implantable materials: an oxidative stress viewpoint. Biomaterials 109, 55–68 (2016).
pubmed: 27669498 doi: 10.1016/j.biomaterials.2016.09.010
Wattamwar, P. P. & Dziubla, T. D. in Engineering Biomaterials for Regenerative Medicine (ed. Bhatia, S.) 161–192 (Springer, 2012).
Iakovlev, V. V., Guelcher, S. A. & Bendavid, R. Degradation of polypropylene in vivo: a microscopic analysis of meshes explanted from patients. J. Biomed. Mater. Res. B Appl. Biomater. 105, 237–248 (2017).
pubmed: 26315946 doi: 10.1002/jbm.b.33502
Cochran, D. & Dziubla, T. D. in Antioxidant Polymers Ch. 15 (eds Cirilo, G. & Iemma, F.) 459–484 (Wiley, 2012).
Davison, N. L., Barrère-de Groot, F. & Grijpma, D. W. in Tissue Engineering Ch. 6 (eds Van Blitterswijk, C. A. & De Boer, J.) 177–215 (Academic, 2014).
Talley, A. D., Rogers, B. R., Iakovlev, V., Dunn, R. F. & Guelcher, S. A. Oxidation and degradation of polypropylene transvaginal mesh. J. Biomater. Sci. Polym. Ed. 28, 444–458 (2017).
pubmed: 28081670 doi: 10.1080/09205063.2017.1279045
Costello, C. R., Bachman, S. L., Ramshaw, B. J. & Grant, S. A. Materials characterization of explanted polypropylene hernia meshes. J. Biomed. Mater. Res. B 83, 44–49 (2007).
doi: 10.1002/jbm.b.30764
Göpferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17, 103–114 (1996).
pubmed: 8624387 doi: 10.1016/0142-9612(96)85755-3
Thames, S. F., White, J. B. & Ong, K. L. The myth: in vivo degradation of polypropylene-based meshes. Int. Urogynecol. J. 28, 285–297 (2017).
pubmed: 27600700 doi: 10.1007/s00192-016-3131-4
Milleret, V. et al. Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers. Acta Biomater. 24, 343–351 (2015).
pubmed: 26102336 doi: 10.1016/j.actbio.2015.06.020
Serpooshan, V. et al. Protein corona influences cell-biomaterial interactions in nanostructured tissue engineering Scaffolds. Adv. Funct. Mater. 25, 4379–4389 (2015).
pubmed: 27516731 pmcid: 4978190 doi: 10.1002/adfm.201500875
Meder, F., Brandes, C., Treccani, L. & Rezwan, K. Controlling protein–particle adsorption by surface tailoring colloidal alumina particles with sulfonate groups. Acta Biomater. 9, 5780–5787 (2013).
pubmed: 23164944 doi: 10.1016/j.actbio.2012.11.012
Feola, A. et al. Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG 120, 224–232 (2013).
pubmed: 23240801 pmcid: 3530836 doi: 10.1111/1471-0528.12077
Liang, R. et al. Vaginal degeneration following implantation of synthetic mesh with increased stiffness. BJOG 120, 233–243 (2013).
pubmed: 23240802 pmcid: 3531826 doi: 10.1111/1471-0528.12085
Sumner, D. R. & Galante, J. O. Determinants of stress shielding. Clin. Orthop. Relat. Res. 274, 202–212 (1992).
doi: 10.1097/00003086-199201000-00020
Sridharan, R., Cavanagh, B., Cameron, A. R., Kelly, D. J. & O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 89, 47–59 (2019).
pubmed: 30826478 doi: 10.1016/j.actbio.2019.02.048
Ji, Y. et al. Substrate stiffness affects the immunosuppressive and trophic function of hMSCs via modulating cytoskeletal polymerization and tension. Biomater. Sci. 7, 5292–5300 (2019).
pubmed: 31612176 doi: 10.1039/C9BM01202H
Blakney, A. K., Swartzlander, M. D. & Bryant, S. J. The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels. J. Biomed. Mater. Res. A 100, 1375–1386 (2012).
pubmed: 22407522 pmcid: 3339197 doi: 10.1002/jbm.a.34104
Roman, S. et al. Use of a simple in vitro fatigue test to assess materials used in the surgical treatment of stress urinary incontinence and pelvic organ prolapse. Neurourol. Urodyn. 38, 107–115 (2019).
pubmed: 30248189 doi: 10.1002/nau.23823
Kruger, J. A., Yan, X., Li, X., Nielsen, P. M. F. & Nash, M. P. in Biomechanics of the Female Pelvic Floor Ch. 18 (eds Hoyte, L. & Damaser, M.) 367–382 (Academic, 2016).
Kruger, J., Hayward, L., Nielsen, P., Loiselle, D. & Kirton, R. Design and development of a novel intra-vaginal pressure sensor. Int. Urogynecol. J. 24, 1715–1721 (2013).
pubmed: 23640001 doi: 10.1007/s00192-013-2097-8
Velayudhan, S., Martin, D. & Cooper-White, J. Evaluation of dynamic creep properties of surgical mesh prostheses — uniaxial fatigue. J. Biomed. Mater. Res. B 91, 287–296 (2009).
doi: 10.1002/jbm.b.31401
Liang, R., Knight, K., Abramowitch, S. & Moalli, P. A. Exploring the basic science of prolapse meshes. Curr. Opin. Obstet. Gynecol. 28, 413–419 (2016).
pubmed: 27517341 pmcid: 5161092 doi: 10.1097/GCO.0000000000000313
Durst, P. J. & Heit, M. H. Polypropylene mesh predicts mesh/suture exposure after sacrocolpopexy independent of known risk factors: a retrospective case-control study. Female Pelvic Med. Reconstr. Surg. 24, 360–366 (2018).
pubmed: 28657987 doi: 10.1097/SPV.0000000000000452
Goldstein, H. S. Selecting the right mesh. Hernia 3, 23–26 (1999).
doi: 10.1007/BF01576737
Barone, W. R., Moalli, P. A. & Abramowitch, S. D. Textile properties of synthetic prolapse mesh in response to uniaxial loading. Am. J. Obstet. Gynecol. 215, 326.e1–326.e9 (2016).
doi: 10.1016/j.ajog.2016.03.023
Amid, P. K. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1, 15–21 (1997).
doi: 10.1007/BF02426382
Klinge, U. & Klosterhalfen, B. Modified classification of surgical meshes for hernia repair based on the analyses of 1,000 explanted meshes. Hernia 16, 251–258 (2012).
pubmed: 22562353 pmcid: 3360857 doi: 10.1007/s10029-012-0913-6
Otto, J., Kaldenhoff, E., Kirschner-Hermanns, R., Mühl, T. & Klinge, U. Elongation of textile pelvic floor implants under load is related to complete loss of effective porosity, thereby favoring incorporation in scar plates. J. Biomed. Mater. Res. A 102, 1079–1084 (2014).
pubmed: 23625516 doi: 10.1002/jbm.a.34767
Junge, K. et al. Mesh biocompatibility: effects of cellular inflammation and tissue remodelling. Langenbecks Arch. Surg. 397, 255–270 (2012).
pubmed: 21455703 doi: 10.1007/s00423-011-0780-0
Manodoro, S. et al. Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG 120, 244–250 (2013).
pubmed: 23240803 doi: 10.1111/1471-0528.12081
Klinge, U. et al. Impact of polymer pore size on the interface scar formation in a rat model. J. Surg. Res. 103, 208–214 (2002).
pubmed: 11922736 doi: 10.1006/jsre.2002.6358
US Food and Drug Administration. Search the releasable 510(k) database (FDA, 2018).
Institute of Medicine. Medical Devices and the Public’s Health (National Academies, 2011).
International Consortium of Investigative Journalists. Medical devices harm patients worldwide as governments fail on safety. ICIJ https://www.icij.org/investigations/implant-files/medical-devices-harm-patients-worldwide-as-governments-fail-on-safety/ (2018).
Heneghan, C. et al. Transvaginal mesh failure: lessons for regulation of implantable devices. BMJ 359, j5515 (2017).
pubmed: 29217786 doi: 10.1136/bmj.j5515
Zargar, N. & Carr, A. The regulatory ancestral network of surgical meshes. PLoS ONE 13, e0197883 (2018).
pubmed: 29920525 pmcid: 6007828 doi: 10.1371/journal.pone.0197883
Ostergard, D. R. Vaginal mesh grafts and the Food and Drug Administration. Int. Urogynecol. J. 21, 1181–1183 (2010).
pubmed: 20683578 pmcid: 2931637 doi: 10.1007/s00192-010-1227-9
Heneghan, C. et al. Trials of transvaginal mesh devices for pelvic organ prolapse: a systematic database review of the US FDA approval process. BMJ Open 7, e017125 (2017).
pubmed: 29212782 pmcid: 5728256 doi: 10.1136/bmjopen-2017-017125
Barber, S. Surgical mesh implants (House of Commons Library, 2018).
Obstetrical and Gynecological Devices. Reclassification of Surgical mesh for transvaginal pelvic organ prolapse repair; final order. Fed. Regist. 81, 353–361 (2016).
US Food and Drug Administration. Code of Federal Regulations — Title 21 (FDA, 2019).
Hartung, T. & Daston, G. Are in vitro tests suitable for regulatory use? Toxicol. Sci. 111, 233–237 (2009).
pubmed: 19617452 doi: 10.1093/toxsci/kfp149
International Organization for Standardization. ISO 10993-6:2016: biological evaluation of medical devices — Part 6: Tests for local effects after implantation (ISO, 2020).
International Organization for Standardization. ISO 10993-11:2006: biological evaluation of medical devices — Part 11: Tests for systemic toxicity (ISO, 2020).
Hast, M. W., Zuskov, A. & Soslowsky, L. J. The role of animal models in tendon research. Bone Jt. Res. 3, 193–202 (2014).
doi: 10.1302/2046-3758.36.2000281
Pierce, L. M. et al. Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. Am. J. Obstet. Gynecol. 200, 546.e1–546.e8 (2009).
doi: 10.1016/j.ajog.2008.12.040
Ostergard, D. R. Degradation, infection and heat effects on polypropylene mesh for pelvic implantation: what was known and when it was known. Int. Urogynecol. J. 22, 771–774 (2011).
pubmed: 21512830 pmcid: 3112322 doi: 10.1007/s00192-011-1399-y
Medicines and Healthcare Products Regulatory Agency. Yellow card scheme. Yellow Card https://yellowcard.mhra.gov.uk/ (2021).
US Food and Drug Administration. MAUDE — manufacturer and user facility device experience (FDA, 2021).
Rimmer, A. Vaginal mesh procedures need compulsory register, says Royal College. BMJ 360, k586 (2018).
pubmed: 29437659 doi: 10.1136/bmj.k586
National Joint Registry. Welcome to the national joint registry (NJR). NJR http://www.njrcentre.org.uk/njrcentre/ (2020).
NHS Digital. Breast and cosmetic implant registry (NHS Digital, 2021).
Hansen, U. D., Gradel, K. O. & Larsen, M. D. Danish urogynaecological database. Clin. Epidemiol. 8, 709–712 (2016).
pubmed: 27826217 pmcid: 5096783 doi: 10.2147/CLEP.S99511
Daly, J. O., Ahern, S., Herkes, R. & O’Connell, H. E. The Australasian pelvic floor procedure registry: not before time. Aust. N. Zeal. J. Obstet. Gynaecol. 59, 473–476 (2019).
doi: 10.1111/ajo.13030
New Zealand Ministry of Health. Surgical mesh registry: cost benefit analysis (Deloitte, 2018).
Bako, A. & Dhar, R. Review of synthetic mesh-related complications in pelvic floor reconstructive surgery. Int. Urogynecol. J. 20, 103–111 (2009).
doi: 10.1007/s00192-008-0717-5
International Association for the Study of Pain. Definition of pain. IASP https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698#Pain (2020).
Haylen, B. et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) and grafts in female pelvic floor surgery. Neurourol. Urodyn. 30, 2–12 (2011).
pubmed: 21181958 doi: 10.1002/nau.21036

Auteurs

Roxanna E Abhari (RE)

Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK. roxanna.abhari@medschool.ox.ac.uk.

Matthew L Izett-Kay (ML)

Department of Urogynaecology, Oxford University Hospitals NHS Trust, Oxford, UK.
Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.

Hayley L Morris (HL)

Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.

Rufus Cartwright (R)

Department of Urogynaecology, London North West Hospitals NHS Trust, London, UK.
Department of Epidemiology & Biostatistics, Imperial College London, London, UK.

Sarah J B Snelling (SJB)

Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.
NIHR Oxford Biomedical Research Centre, Oxford, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH