Automatic Semicircular Canal Segmentation of CT Volumes Using Improved 3D U-Net with Attention Mechanism.
Journal
Computational intelligence and neuroscience
ISSN: 1687-5273
Titre abrégé: Comput Intell Neurosci
Pays: United States
ID NLM: 101279357
Informations de publication
Date de publication:
2021
2021
Historique:
received:
02
06
2021
accepted:
24
08
2021
entrez:
21
9
2021
pubmed:
22
9
2021
medline:
23
9
2021
Statut:
epublish
Résumé
The vestibular system is the sensory apparatus that helps the body maintain its postural equilibrium, and semicircular canal is an important organ of the vestibular system. The semicircular canals are three membranous tubes, each forming approximately two-thirds of a circle with a diameter of approximately 6.5 mm, and segmenting them accurately is of great benefit for auxiliary diagnosis, surgery, and treatment of vestibular disease. However, the semicircular canal has small volume, which accounts for less than 1% of the overall computed tomography image. Doctors have to annotate the image in a slice-by-slice manner, which is time-consuming and labor-intensive. To solve this problem, we propose a novel 3D convolutional neural network based on 3D U-Net to automatically segment the semicircular canal. We added the spatial attention mechanism of 3D spatial squeeze and excitation modules, as well as channel attention mechanism of 3D global attention upsample modules to improve the network performance. Our network achieved an average dice coefficient of 92.5% on the test dataset, which shows competitive performance in semicircular canals segmentation task.
Identifiants
pubmed: 34545284
doi: 10.1155/2021/9654059
pmc: PMC8448990
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9654059Informations de copyright
Copyright © 2021 Hongcheng Wu et al.
Déclaration de conflit d'intérêts
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Références
Front Cardiovasc Med. 2020 Mar 05;7:25
pubmed: 32195270
IEEE Trans Med Imaging. 2021 Jan;40(1):262-273
pubmed: 32956047
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651
pubmed: 27244717
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11
pubmed: 32613207
Front Cell Neurosci. 2018 Nov 22;12:456
pubmed: 30524247
Sci Rep. 2021 Jan 8;11(1):116
pubmed: 33420386
Med Image Anal. 2017 Jan;35:18-31
pubmed: 27310171
BMC Syst Biol. 2018 Apr 24;12(Suppl 4):56
pubmed: 29745840
Rev Neurosci. 2017 Jul 26;28(5):537-549
pubmed: 28301322
Laryngoscope. 2017 Mar;127(3):709-714
pubmed: 27726156
Neuroimage. 2018 Apr 15;170:446-455
pubmed: 28445774
Otolaryngol Head Neck Surg. 2011 Jul;145(1):110-6
pubmed: 21493319
Comput Biol Med. 2010 Feb;40(2):231-6
pubmed: 20053396
Nature. 2017 Feb 2;542(7639):115-118
pubmed: 28117445
Neural Netw. 2020 Apr;124:75-85
pubmed: 32004922
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:758-762
pubmed: 32802270
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2011-2023
pubmed: 31034408
J Assoc Res Otolaryngol. 2005 Sep;6(3):191-206
pubmed: 16088383