Markers for Mitochondrial ROS Status.
Carbonylated proteins
Glutathione
Lipid peroxidation
Mitochondria
Mitochondrial integrity
Oxidized proteins
Reactive oxygen species
Superoxide anion radical
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2022
2022
Historique:
entrez:
21
9
2021
pubmed:
22
9
2021
medline:
11
1
2022
Statut:
ppublish
Résumé
Mitochondria actively participate in oxygenic metabolism and are one of the major sources of reactive oxygen species (ROS) production in plant cells. However, instead of measuring ROS concentrations in organelles it is more worthwhile to observe active ROS generation or downstream oxidation products, because the steady state level of ROS is easily buffered. Here, we describe how to measure the in vitro production of superoxide anion radicals (O
Identifiants
pubmed: 34545495
doi: 10.1007/978-1-0716-1653-6_15
doi:
Substances chimiques
Mitochondrial Proteins
0
Reactive Oxygen Species
0
Glutathione
GAN16C9B8O
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
199-213Informations de copyright
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Rhoads DM, Umbach AL, Subbaiah CC et al (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366
doi: 10.1104/pp.106.079129
Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566
doi: 10.3389/fpls.2014.00566
McGill MR, Jaeschke H (2015) A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicol Mech Method 25:589–595
doi: 10.3109/15376516.2015.1094844
Murcha MW, Whelan J (2015) Isolation of intact mitochondria from the model plant species Arabidopsis thaliana and Oryza sativa. In: Whelan J, Murcha M (eds) Plant mitochondria. Methods in molecular biology, vol 1305. Humana Press, New York, NY, pp 1–12
Lyu W, Selinski J, Li L et al (2018) Isolation and respiratory measurements of mitochondria from Arabidopsis thaliana. J Vis Exp 131:e56627. https://doi.org/10.3791/56627
doi: 10.3791/56627
Keech O, Dizengremel P, Gardeström P (2005) Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol Plant 124:403–409
doi: 10.1111/j.1399-3054.2005.00521.x
Sweetlove LJ, Taylor NL, Leaver CJ (2007) Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana. In: Leister D, Herrmann JM (eds) Mitochondria. Methods in molecular biology, vol 372. Humana Press, Totowa, New Jersey, pp 125–136
Podgórska A, Ostaszewska M, Gardeström P et al (2015) In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant. Plant Cell Environ 38:224–237
doi: 10.1111/pce.12404
Szal B, Łukawska K, Zdolińska I et al (2009) Chilling stress and mitochondrial genome rearrangement in the MSC16 cucumber mutant affect the alternative oxidase and antioxidant defense system to a similar extent. Physiol Plant 137:435–445
doi: 10.1111/j.1399-3054.2009.01255.x
Boveris A (1984) Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. In: Packer L (ed) Methods in enzymology, vol 105. Academic Press, New York, pp 429–435
Purvis AC, Shewfelt RL, Gegogeine JW (1995) Superoxide production by mitochondria isolated from green bell pepper fruit. Physiol Plant 94:743–749
doi: 10.1111/j.1399-3054.1995.tb00993.x
Hodges DM, DeLong JM, Forney CF et al (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611
doi: 10.1007/s004250050524
Colombo G, Clerici M, Garavaglia ME et al (2016) A step-by-step protocol for assaying protein carbonylation in biological samples. J Chromatogr B 1019:178–190
doi: 10.1016/j.jchromb.2015.11.052
Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. In: Packer L, Glazer AN (eds) Methods in enzymology, vol 186. Academic Press, New York, pp 464–478
Weber D, Davies MJ, Grune T (2015) Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biol 5:367–380
doi: 10.1016/j.redox.2015.06.005
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
doi: 10.1038/227680a0
Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373
doi: 10.1111/j.1469-8137.1996.tb01856.x
Mohammadi M, Karr AL (2001) Superoxide anion generation in effective and ineffective soybean root nodules. J Plant Physiol 158:1023–1029
doi: 10.1078/S0176-1617(04)70126-1
Johansson FI, Michalecka AM, Møller IM et al (2004) Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilized plant mitochondria. Biochem J 380:193–202
doi: 10.1042/bj20031969
Kramer DM, Roberts AG, Muller F et al (2004) Q-cycle bypass reactions at the Qo site of the cytochrome bc1 (and related) complexes. In: Sies H, Packer L (eds) Methods in enzymology, vol 382. Academic Press, Cambridge, Massachusetts, pp 21–45
Szal B, Drozd M, Rychter AM (2004) Factors affecting determination of superoxide anion generated by mitochondria from barley roots after anaerobiosis. J Plant Physiol 161:1339–1346
doi: 10.1016/j.jplph.2004.03.005
Jocelyn PC, Cronshaw A (1985) Properties of mitochondria treated with 1-chloro-2,4-dinitrobenzene. Biochem Pharmacol 34:1588–1590
doi: 10.1016/0006-2952(85)90706-3
Wang P, Powell SR (2010) Decreased sensitivity associated with an altered formulation of a commercially available kit for detection of protein carbonyls. Free Radic Biol Med 49:119–121
doi: 10.1016/j.freeradbiomed.2010.03.005
Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202
doi: 10.1017/S0033583500005795
Ostaszewska-Bugajska M, Rychter AM, Juszczuk IM (2015) Antioxidative and proteolytic systems protect mitochondria from oxidative damage in S-deficient Arabidopsis thaliana. J Plant Physiol 186:25–38
doi: 10.1016/j.jplph.2015.07.011
Luo S, Wehr NB (2009) Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay. Redox Rep 14:159–166
doi: 10.1179/135100009X392601
Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821
doi: 10.1146/annurev.bi.62.070193.004053
Rogowska-Wrzesinska A, Wojdyla K, Nedić O et al (2014) Analysis of protein carbonylation—pitfalls and promise in commonly used methods. Free Radic Res 48:1145–1162
doi: 10.3109/10715762.2014.944868