Oxidative cleavage of C-C bonds in lignin.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
11 2021
Historique:
received: 29 08 2020
accepted: 04 08 2021
pubmed: 25 9 2021
medline: 23 11 2021
entrez: 24 9 2021
Statut: ppublish

Résumé

Lignin is an aromatic polymer that constitutes up to 30 wt% of woody biomass and is considered the largest source of renewable aromatics. Valorization of the lignin stream is pivotal for making biorefining sustainable. Monomeric units in lignin are bound via C-O and C-C bonds. The majority of existing methods for the production of valuable compounds from lignin are based on the depolymerization of lignin via cleavage of relatively labile C-O bonds within lignin structure, which leads to yields of only 36-40 wt%. The remaining fraction (60 wt%) is a complex mixture of high-molecular-weight lignin, generally left unvalorized. Here we present a method to produce additional valuable monomers from the high-molecular-weight lignin fraction through oxidative C-C bond cleavage. This oxidation reaction proceeds with a high selectivity to give 2,6-dimethoxybenzoquinone (DMBQ) from high-molecular-weight lignin in 18 wt% yield, thus increasing the yield of monomers by 32%. This is an important step to make biorefining competitive with petroleum-based refineries.

Identifiants

pubmed: 34556848
doi: 10.1038/s41557-021-00783-2
pii: 10.1038/s41557-021-00783-2
doi:

Substances chimiques

Carbon 7440-44-0
Lignin 9005-53-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1118-1125

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).
doi: 10.1002/anie.201510351
Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).
pubmed: 20218547 doi: 10.1021/cr900354u pmcid: 20218547
Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).
pubmed: 27720980 doi: 10.1016/j.biotechadv.2016.10.001 pmcid: 27720980
Bajwa, D. S., Pourhashem, G., Ullah, A. H. & Bajwa, S. G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 139, 111526 (2019).
doi: 10.1016/j.indcrop.2019.111526
Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).
pubmed: 29337543 pmcid: 5785760 doi: 10.1021/acs.chemrev.7b00588
Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).
pubmed: 29318245 doi: 10.1039/C7CS00566K pmcid: 29318245
Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).
doi: 10.1039/C7EE01298E
Galkin, M. V. & Samec, J. S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).
pubmed: 27273230 doi: 10.1002/cssc.201600237 pmcid: 27273230
Rahimi, A., Ulbrich, A., Stahl, S. S. & Coon, J. J. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).
pubmed: 25363781 doi: 10.1038/nature13867 pmcid: 25363781
Lahive, C. W. et al. Advanced model compounds for understanding acid-catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent. JACS 138, 8900–8911 (2016).
doi: 10.1021/jacs.6b04144
Deuss, P. J. et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. JACS 137, 7456–7467 (2015).
doi: 10.1021/jacs.5b03693
Subbotina, E., Velty, A., Samec, J. S. M. & Corma, A. Zeolite-assisted lignin-first fractionation of lignocellulose: overcoming lignin recondensation through shape-selective catalysis. ChemSusChem 13, 4528–4536 (2020).
pubmed: 32281748 doi: 10.1002/cssc.202000330 pmcid: 32281748
Galkin, M. V. et al. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 9, 3280–3287 (2016).
pubmed: 27860308 doi: 10.1002/cssc.201600648 pmcid: 27860308
Kumaniaev, I. et al. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chem. 19, 5767–5771 (2017).
doi: 10.1039/C7GC02731A
Guadix-Montero, S. & Sankar, M. Review on catalytic cleavage of C–C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top. Catal. 61, 183–198 (2018).
doi: 10.1007/s11244-018-0909-2
Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).
pubmed: 32054697 doi: 10.1126/science.aau1567 pmcid: 32054697
Dong, L. et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages. Chem 5, 1521–1536 (2019).
doi: 10.1016/j.chempr.2019.03.007
Crane, F. L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20, 591–Q598 (2001).
pubmed: 11771674 doi: 10.1080/07315724.2001.10719063 pmcid: 11771674
Higuchi, T., Satake, C. & Hirobe, M. Selective quinone formation by oxidation of aromatics with heteroaromatic N-oxides catalyzed by ruthenium porphyrins. JACS 117, 8879–8880 (1995).
doi: 10.1021/ja00139a033
Zhang, J.-L. & Che, C.-M. Dichlororuthenium(IV) complex of meso-tetrakis(2,6-dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron-deficient alkenes by using 2,6-dichloropyridine N-oxide. Chem. Eur. J. 11, 3899–3914 (2005).
pubmed: 15812875 doi: 10.1002/chem.200401008 pmcid: 15812875
Liu, P., Liu, Y., Wong, E. L.-M., Xiang, S. & Che, C.-M. Iron oligopyridine complexes as efficient catalysts for practical oxidation of arenes, alkanes, tertiary amines and N-acyl cyclic amines with oxone. Chem. Sci. 2, 2187–2195 (2011).
doi: 10.1039/c1sc00234a
Gulaboski, R. et al. Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Sci. Rep. 3, 1865 (2013).
pubmed: 23689559 pmcid: 3659321 doi: 10.1038/srep01865
Csjernyik, G., Éll, A. H., Fadini, L., Pugin, B. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Organic Chem. 67, 1657–1662 (2002).
doi: 10.1021/jo0163750
Samec, J. S. M., Éll, A. H. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chem. Eur. J. 11, 2327–2334 (2005).
pubmed: 15706621 doi: 10.1002/chem.200401082 pmcid: 15706621
Renders, T. et al. Influence of acidic (H
doi: 10.1021/acscatal.5b02906
Meng, X. et al. Determination of hydroxyl groups in biorefinery resources via quantitative
pubmed: 31391578 doi: 10.1038/s41596-019-0191-1 pmcid: 31391578
Fache, M., Boutevin, B. & Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016).
doi: 10.1021/acssuschemeng.5b01344
Canevali, C. et al. Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation. J. Chem. Soc. Dalton Trans. 15, 3007–3014 (2002).
doi: 10.1039/b203386k
Cui, F., Wijesekera, T., Dolphin, D., Farrell, R. & Skerker, P. Biomimetic degradation of lignin. J. Biotechnol. 30, 15–26 (1993).
doi: 10.1016/0168-1656(93)90023-G
Crestini, C., Pastorini, A. & Tagliatesta, P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J. Mol. Catal. A 208, 195–202 (2004).
doi: 10.1016/j.molcata.2003.07.015
Bozell, J. J., Hames, B. R. & Dimmel, D. R. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones. J. Organic Chem. 60, 2398–2404 (1995).
doi: 10.1021/jo00113a020
Key, R. E., Elder, T. & Bozell, J. J. Steric effects of bulky tethered arylpiperazines on the reactivity of Co-Schiff base oxidation catalysts—a synthetic and computational study. Tetrahedron 75, 3118–3127 (2019).
doi: 10.1016/j.tet.2019.04.059
Biannic, B., Bozell, J. J. & Elder, T. Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones. Green Chem. 16, 3635–3642 (2014).
doi: 10.1039/C4GC00709C
Biannic, B. & Bozell, J. J. Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org. Lett. 15, 2730–2733 (2013).
pubmed: 23679189 doi: 10.1021/ol401065r pmcid: 23679189
Hanson, S. K., Wu, R. & Silks, L. A. P. C–C or C–O Bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew. Chem. Int. Ed. 51, 3410–3413 (2012).
doi: 10.1002/anie.201107020
Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).
pubmed: 31999099 doi: 10.1021/acs.accounts.9b00573 pmcid: 31999099
Wang, M. & Wang, F. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 31, 1901866 (2019).
doi: 10.1002/adma.201901866
Tran, F., Lancefield, C. S., Kamer, P. C. J., Lebl, T. & Westwood, N. J. Selective modification of the β–β linkage in DDQ-treated Kraft lignin analysed by 2D NMR spectroscopy. Green Chem. 17, 244–249 (2015).
doi: 10.1039/C4GC01012D
Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. JACS 135, 6415–6418 (2013).
doi: 10.1021/ja401793n
Rafiee, M., Alherech, M., Karlen, S. D. & Stahl, S. S. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: polymer modification and depolymerization. JACS 141, 15266–15276 (2019).
doi: 10.1021/jacs.9b07243
Hunter, D. H., Barton, D. H. R. & Motherwell, W. J. Oxoammonium salts as oxidizing agents: 2,2,6,6-tetramethyl-1-oxopiperidinium chloride. Tetrahedron Lett. 25, 603–606 (1984).
doi: 10.1016/S0040-4039(00)99949-0
Guo, H. X., Liu, Y. C., Liu, Z. L. & Li, C. L. 1-oxo-2,2,6,6-Tetramethyl-4-chloropiperidinium perchlorate. A new facile oxidant for phenol coupling. Res. Chem. Intermed. 17, 137–143 (1992).
doi: 10.1163/156856792X00100
Ciriminna, R. & Pagliaro, M. Industrial oxidations with organocatalyst TEMPO and its derivatives. Org. Process Res. Dev. 14, 245–251 (2010).
doi: 10.1021/op900059x
Mercadante, M. A., Kelly, C. B., Bobbitt, J. M., Tilley, L. J. & Leadbeater, N. E. Synthesis of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate and 4-acetamido-(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl and their use in oxidative reactions. Nat. Protoc. 8, 666–676 (2013).
pubmed: 23471111 doi: 10.1038/nprot.2013.028 pmcid: 23471111
Cardiel, A. C., Taitt, B. J. & Choi, K.-S. Stabilities, regeneration pathways, and electrocatalytic properties of nitroxyl radicals for the electrochemical oxidation of 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 7, 11138–11149 (2019).
doi: 10.1021/acssuschemeng.9b00203
Miller, S. A., Nandi, J., Leadbeater, N. E. & Eddy, N. A. Probing the effect of counterions on the oxidation of alcohols using oxoammonium salts. Eur. J. Org. Chem. 2020, 108–112 (2020).
doi: 10.1002/ejoc.201901369

Auteurs

Elena Subbotina (E)

Department of Organic Chemistry, Stockholm University, Stockholm, Sweden.

Thanya Rukkijakan (T)

Department of Organic Chemistry, Stockholm University, Stockholm, Sweden.

M Dolores Marquez-Medina (MD)

Department of Organic Chemistry University of Cordoba, Cordoba, Spain.

Xiaowen Yu (X)

Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.

Mats Johnsson (M)

Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.

Joseph S M Samec (JSM)

Department of Organic Chemistry, Stockholm University, Stockholm, Sweden. joseph.samec@su.se.

Articles similaires

India Carbon Sequestration Environmental Monitoring Carbon Biomass

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Biomass Lignin Wood Populus Microscopy, Electron, Scanning
Citrus Phenylalanine Ammonia-Lyase Stress, Physiological Multigene Family Phylogeny

Classifications MeSH