Oxidative cleavage of C-C bonds in lignin.
Journal
Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
29
08
2020
accepted:
04
08
2021
pubmed:
25
9
2021
medline:
23
11
2021
entrez:
24
9
2021
Statut:
ppublish
Résumé
Lignin is an aromatic polymer that constitutes up to 30 wt% of woody biomass and is considered the largest source of renewable aromatics. Valorization of the lignin stream is pivotal for making biorefining sustainable. Monomeric units in lignin are bound via C-O and C-C bonds. The majority of existing methods for the production of valuable compounds from lignin are based on the depolymerization of lignin via cleavage of relatively labile C-O bonds within lignin structure, which leads to yields of only 36-40 wt%. The remaining fraction (60 wt%) is a complex mixture of high-molecular-weight lignin, generally left unvalorized. Here we present a method to produce additional valuable monomers from the high-molecular-weight lignin fraction through oxidative C-C bond cleavage. This oxidation reaction proceeds with a high selectivity to give 2,6-dimethoxybenzoquinone (DMBQ) from high-molecular-weight lignin in 18 wt% yield, thus increasing the yield of monomers by 32%. This is an important step to make biorefining competitive with petroleum-based refineries.
Identifiants
pubmed: 34556848
doi: 10.1038/s41557-021-00783-2
pii: 10.1038/s41557-021-00783-2
doi:
Substances chimiques
Carbon
7440-44-0
Lignin
9005-53-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1118-1125Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 55, 8164–8215 (2016).
doi: 10.1002/anie.201510351
Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L. & Weckhuysen, B. M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110, 3552–3599 (2010).
pubmed: 20218547
doi: 10.1021/cr900354u
pmcid: 20218547
Abdelaziz, O. Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).
pubmed: 27720980
doi: 10.1016/j.biotechadv.2016.10.001
pmcid: 27720980
Bajwa, D. S., Pourhashem, G., Ullah, A. H. & Bajwa, S. G. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 139, 111526 (2019).
doi: 10.1016/j.indcrop.2019.111526
Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).
pubmed: 29337543
pmcid: 5785760
doi: 10.1021/acs.chemrev.7b00588
Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).
pubmed: 29318245
doi: 10.1039/C7CS00566K
pmcid: 29318245
Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).
doi: 10.1039/C7EE01298E
Galkin, M. V. & Samec, J. S. Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9, 1544–1558 (2016).
pubmed: 27273230
doi: 10.1002/cssc.201600237
pmcid: 27273230
Rahimi, A., Ulbrich, A., Stahl, S. S. & Coon, J. J. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).
pubmed: 25363781
doi: 10.1038/nature13867
pmcid: 25363781
Lahive, C. W. et al. Advanced model compounds for understanding acid-catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent. JACS 138, 8900–8911 (2016).
doi: 10.1021/jacs.6b04144
Deuss, P. J. et al. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. JACS 137, 7456–7467 (2015).
doi: 10.1021/jacs.5b03693
Subbotina, E., Velty, A., Samec, J. S. M. & Corma, A. Zeolite-assisted lignin-first fractionation of lignocellulose: overcoming lignin recondensation through shape-selective catalysis. ChemSusChem 13, 4528–4536 (2020).
pubmed: 32281748
doi: 10.1002/cssc.202000330
pmcid: 32281748
Galkin, M. V. et al. Hydrogen-free catalytic fractionation of woody biomass. ChemSusChem 9, 3280–3287 (2016).
pubmed: 27860308
doi: 10.1002/cssc.201600648
pmcid: 27860308
Kumaniaev, I. et al. Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chem. 19, 5767–5771 (2017).
doi: 10.1039/C7GC02731A
Guadix-Montero, S. & Sankar, M. Review on catalytic cleavage of C–C inter-unit linkages in lignin model compounds: towards lignin depolymerisation. Top. Catal. 61, 183–198 (2018).
doi: 10.1007/s11244-018-0909-2
Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).
pubmed: 32054697
doi: 10.1126/science.aau1567
pmcid: 32054697
Dong, L. et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages. Chem 5, 1521–1536 (2019).
doi: 10.1016/j.chempr.2019.03.007
Crane, F. L. Biochemical functions of coenzyme Q10. J. Am. Coll. Nutr. 20, 591–Q598 (2001).
pubmed: 11771674
doi: 10.1080/07315724.2001.10719063
pmcid: 11771674
Higuchi, T., Satake, C. & Hirobe, M. Selective quinone formation by oxidation of aromatics with heteroaromatic N-oxides catalyzed by ruthenium porphyrins. JACS 117, 8879–8880 (1995).
doi: 10.1021/ja00139a033
Zhang, J.-L. & Che, C.-M. Dichlororuthenium(IV) complex of meso-tetrakis(2,6-dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron-deficient alkenes by using 2,6-dichloropyridine N-oxide. Chem. Eur. J. 11, 3899–3914 (2005).
pubmed: 15812875
doi: 10.1002/chem.200401008
pmcid: 15812875
Liu, P., Liu, Y., Wong, E. L.-M., Xiang, S. & Che, C.-M. Iron oligopyridine complexes as efficient catalysts for practical oxidation of arenes, alkanes, tertiary amines and N-acyl cyclic amines with oxone. Chem. Sci. 2, 2187–2195 (2011).
doi: 10.1039/c1sc00234a
Gulaboski, R. et al. Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Sci. Rep. 3, 1865 (2013).
pubmed: 23689559
pmcid: 3659321
doi: 10.1038/srep01865
Csjernyik, G., Éll, A. H., Fadini, L., Pugin, B. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system. J. Organic Chem. 67, 1657–1662 (2002).
doi: 10.1021/jo0163750
Samec, J. S. M., Éll, A. H. & Bäckvall, J.-E. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chem. Eur. J. 11, 2327–2334 (2005).
pubmed: 15706621
doi: 10.1002/chem.200401082
pmcid: 15706621
Renders, T. et al. Influence of acidic (H
doi: 10.1021/acscatal.5b02906
Meng, X. et al. Determination of hydroxyl groups in biorefinery resources via quantitative
pubmed: 31391578
doi: 10.1038/s41596-019-0191-1
pmcid: 31391578
Fache, M., Boutevin, B. & Caillol, S. Vanillin production from lignin and its use as a renewable chemical. ACS Sustain. Chem. Eng. 4, 35–46 (2016).
doi: 10.1021/acssuschemeng.5b01344
Canevali, C. et al. Oxidative degradation of monomeric and dimeric phenylpropanoids: reactivity and mechanistic investigation. J. Chem. Soc. Dalton Trans. 15, 3007–3014 (2002).
doi: 10.1039/b203386k
Cui, F., Wijesekera, T., Dolphin, D., Farrell, R. & Skerker, P. Biomimetic degradation of lignin. J. Biotechnol. 30, 15–26 (1993).
doi: 10.1016/0168-1656(93)90023-G
Crestini, C., Pastorini, A. & Tagliatesta, P. Metalloporphyrins immobilized on motmorillonite as biomimetic catalysts in the oxidation of lignin model compounds. J. Mol. Catal. A 208, 195–202 (2004).
doi: 10.1016/j.molcata.2003.07.015
Bozell, J. J., Hames, B. R. & Dimmel, D. R. Cobalt-Schiff base complex catalyzed oxidation of para-substituted phenolics. Preparation of benzoquinones. J. Organic Chem. 60, 2398–2404 (1995).
doi: 10.1021/jo00113a020
Key, R. E., Elder, T. & Bozell, J. J. Steric effects of bulky tethered arylpiperazines on the reactivity of Co-Schiff base oxidation catalysts—a synthetic and computational study. Tetrahedron 75, 3118–3127 (2019).
doi: 10.1016/j.tet.2019.04.059
Biannic, B., Bozell, J. J. & Elder, T. Steric effects in the design of Co-Schiff base complexes for the catalytic oxidation of lignin models to para-benzoquinones. Green Chem. 16, 3635–3642 (2014).
doi: 10.1039/C4GC00709C
Biannic, B. & Bozell, J. J. Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones. Org. Lett. 15, 2730–2733 (2013).
pubmed: 23679189
doi: 10.1021/ol401065r
pmcid: 23679189
Hanson, S. K., Wu, R. & Silks, L. A. P. C–C or C–O Bond cleavage in a phenolic lignin model compound: selectivity depends on vanadium catalyst. Angew. Chem. Int. Ed. 51, 3410–3413 (2012).
doi: 10.1002/anie.201107020
Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).
pubmed: 31999099
doi: 10.1021/acs.accounts.9b00573
pmcid: 31999099
Wang, M. & Wang, F. Catalytic scissoring of lignin into aryl monomers. Adv. Mater. 31, 1901866 (2019).
doi: 10.1002/adma.201901866
Tran, F., Lancefield, C. S., Kamer, P. C. J., Lebl, T. & Westwood, N. J. Selective modification of the β–β linkage in DDQ-treated Kraft lignin analysed by 2D NMR spectroscopy. Green Chem. 17, 244–249 (2015).
doi: 10.1039/C4GC01012D
Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. JACS 135, 6415–6418 (2013).
doi: 10.1021/ja401793n
Rafiee, M., Alherech, M., Karlen, S. D. & Stahl, S. S. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: polymer modification and depolymerization. JACS 141, 15266–15276 (2019).
doi: 10.1021/jacs.9b07243
Hunter, D. H., Barton, D. H. R. & Motherwell, W. J. Oxoammonium salts as oxidizing agents: 2,2,6,6-tetramethyl-1-oxopiperidinium chloride. Tetrahedron Lett. 25, 603–606 (1984).
doi: 10.1016/S0040-4039(00)99949-0
Guo, H. X., Liu, Y. C., Liu, Z. L. & Li, C. L. 1-oxo-2,2,6,6-Tetramethyl-4-chloropiperidinium perchlorate. A new facile oxidant for phenol coupling. Res. Chem. Intermed. 17, 137–143 (1992).
doi: 10.1163/156856792X00100
Ciriminna, R. & Pagliaro, M. Industrial oxidations with organocatalyst TEMPO and its derivatives. Org. Process Res. Dev. 14, 245–251 (2010).
doi: 10.1021/op900059x
Mercadante, M. A., Kelly, C. B., Bobbitt, J. M., Tilley, L. J. & Leadbeater, N. E. Synthesis of 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate and 4-acetamido-(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl and their use in oxidative reactions. Nat. Protoc. 8, 666–676 (2013).
pubmed: 23471111
doi: 10.1038/nprot.2013.028
pmcid: 23471111
Cardiel, A. C., Taitt, B. J. & Choi, K.-S. Stabilities, regeneration pathways, and electrocatalytic properties of nitroxyl radicals for the electrochemical oxidation of 5-hydroxymethylfurfural. ACS Sustain. Chem. Eng. 7, 11138–11149 (2019).
doi: 10.1021/acssuschemeng.9b00203
Miller, S. A., Nandi, J., Leadbeater, N. E. & Eddy, N. A. Probing the effect of counterions on the oxidation of alcohols using oxoammonium salts. Eur. J. Org. Chem. 2020, 108–112 (2020).
doi: 10.1002/ejoc.201901369